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Administrivia

• TCP milestone I:  this week, sign up for a meeting if you haven’t

• TCP Gearup II:  TONIGHT, 10/31 6-8pm in CIT 368
– Prep for milestone II

• HW3 (short!):  Due next Thurs



Administrivia

• TCP milestone I:  this week, sign up for a meeting if you haven’t
– If you’re stuck:  bring what you have, it does not need to be perfect
– DO NOT just hack stuff together to make it look good in Wireshark

• TCP Gearup II:  TONIGHT, 10/31 6-8pm in CIT 368
– Prep for milestone II

• HW3 (short!):  Due next Thurs



Warmup

Which of the following contribute to congestion?
a. Packets queueing up at switches
b. High CPU usage on the receiver
c. Many TCP connections sending on the same link
d. Many UDP connections sending on the same link
e. An unreliable Wifi link
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Thinking about congestion

“BBR congestion control”

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf


4

De
liv

er
y 

ra
te

BDP BDP + BufSize

RT
T

Amount in flight

Bandwidth-delay product (BDP):  maximum amount of data that can be in-transit on 
a network link at any given time

 (Link capacity (bits/sec))  *  (RTT (sec))
                        = (bytes)

“BBR congestion control”

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf


4
De

liv
er

y 
ra

te
BDP BDP + BufSize

RT
T

Amount in flight

Bandwidth-delay product (BDP):  maximum amount of data that can be in-transit on 
a network link at any given time

 (Link capacity (bits/sec))  *  (RTT (sec))
                        = (bytes)
Eg. 1Gbps link * 1ms RTT = 125KiB BDP
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Bandwidth-delay product (BDP):  maximum amount of data that can be in-transit on 
a network link at any given time

 (Link capacity (bits/sec))  *  (RTT (sec))
                        = (bytes)
Eg. 1Gbps link * 1ms RTT = 125KiB BDP

“BBR congestion control”

=> After exceeding BDP, network is queueing packets.  After queues are full, packets 
getting dropped due to congestion.

Congestion control algorithms operate 
somewhere in this region

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf
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Congestion Control (CC)
algorithm

Signals from the network
(ACKs, other TCP packet info, more...)

Congestion window:  cwnd

Sender can send:  min(advertised window, cwnd)
(Advertised window:  flow control window from receiver)

The basic principle

Þ Different CC algorithms use different signals, different techniques for 
adapting cwnd, but most fit this format



Lots of CC variants designed with different strategies and goals

Network Signals
• Packet loss (“loss-based”)
• Delay/RTT (“delay-based”)
• ”Marks” added on packets by routers 

Goals
• Maximize throughput
• Recover from packet loss or high RTT
• Short-long “flows”
• Datacenter-specific (low-latency)

ÞThis is a big research area!



This is just the beginning…

Lots of congestion control schemes, with different strategies/goals:
• Tahoe (1988)
• Reno (1990)
• Vegas (1994): Detect based on RTT
• New Reno:  Better recovery multiple losses
• Cubic (2006):  Linux default, window size scales by cubic function
• BBR (2016):  Used by Google, measures bandwidth/RTT





DNS



You Some site
5.6.7.8

Connecting to a server:  the story so far
POV:  You want to connect to some website
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You Some site
5.6.7.8

connect(5.6.7.8, 80)

Connecting to a server:  the story so far

Is this how users interact with the network?  No!

POV:  You want to connect to some website
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5.6.7.8

connect(5.6.7.8, 80)



Why not?  Why is this bad? You Some site
5.6.7.8

connect(5.6.7.8, 80)

• Need to know IP addresses!
– Users won’t know
– Hosts don’t know—can’t remember every single one!

• Some host ?= its IP address?   No!
– A large website may be run by many servers
– Devices may move between networks



IP addresses
• Used by routers to forward packets
• Fixed length, binary numbers
• Assigned based on where host is on the network
• Usually refers to one host

What we have so far
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IP addresses
• Used by routers to forward packets
• Fixed length, binary numbers
• Assigned based on where host is on the network
• Usually refers to one host

Examples
• 5.6.7.8
• 212.58.224.138
• 2620:6e:6000:900:c1d:c9f7:8a1c:2f48

What we have

Efficient forwarding:                      ✅
Human readable:                          ❌
Scalable for distributed services:  ❌ 

=> Need a new abstraction for “stuff” we are trying to access



You

Server for 
website.com

5.6.7.8

connect(“website.com”, 80)
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connect(5.6.7.8, 80)



You

Server for 
website.com

5.6.7.8

connect(“website.com”, 80)

What we want:  a new abstraction for names

Want:  names 
 - Human-readable
 - Variable length 
 - Don’t need to care about where destination is/what server it is
       => Can refer to a service, not just a host

connect(5.6.7.8, 80)
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cs.brown.edu => 128.148.32.110
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What does this mean?

cs.brown.edu => 128.148.32.110

Why?
• Names are easier to remember
• Addresses can change underneath

– e.g, renumbering when changing providers
• Useful Multiplexing/sharing

– One name -> multiple addresses
– Multiple names -> one address
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Remember ARP?
IP address => Link-layer address

Now:  DNS
Names useful to users/applications => IP addresses

Another change in layers => which enables so much more…. 



The original way:  one file:  hosts.txt
• Flat namespace
• Central administrator kept master copy (for the Internet)
• To add a host, emailed admin
• Downloaded file regularly
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The original way:  one file:  hosts.txt
• Flat namespace
• Central administrator kept master copy (for the Internet)
• To add a host, emailed admin
• Downloaded file regularly

Does it scale?
Lol no.



Domain Name System (DNS)
Originally proposed by RFC882, RFC883 (1983)

Distributed protocol to translate hostnames -> IP addresses
– Human-readable names
– Delegated control
– Load-balancing/content delivery
– So much more…



Domain Name System (DNS)
Originally proposed by RFC882, RFC883 (1983)

Distributed protocol to translate hostnames -> IP addresses
– Human-readable names
– Delegated control
– Load-balancing/content delivery
– So much more…

=> Distributed key-value store, before it was cool…
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• Scalability

• Distributed Control

• Fault Tolerance



Goals for DNS

• Scalability
– Must handle a huge number of records

• With some software synthesizing names on the fly

– Must sustain update and lookup load

• Distributed Control
– Let people control their own names

• Fault Tolerance
– Minimize lookup failures in face of other network problems



The good news

Compared to other distributed systems, some properties that make these 
goals easier to achieve…

1. Read-mostly database
Lookups MUCH more frequent than updates

2. Loose consistency
When adding a machine, not end of the world if it takes minutes or hours to propagate

Can use lots and lots of caching
– Once you’ve lookup up a hostname, remember 
– Don’t have to look again in the near future



The good news

Compared to other distributed systems, some properties that make these 
goals easier to achieve…



The good news

Compared to other distributed systems, some properties that make these 
goals easier to achieve…

1. Read-mostly database
Lookups MUCH more frequent than updates

2. Loose consistency
When adding a machine, not end of the world if it takes minutes or hours to propagate



How it works
Hierarchical namespace broken into zones

cslab1a.cs.brown.edu



edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr



How it works

• Hierarchical namespace broken into zones
– root (.), edu., brown.edu., cs.brown.edu.,
– Zones separately administered  => delegation
– Parent zone tells you how to find servers for subdomains

• Each zone served from multiple replicated servers
• Lots and lots of caching

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr



Types of DNS servers



“Types” of DNS servers

• Top Level Domain (TLD) servers
– Generic domains (e.g., com, org, edu)
– Country domains (e.g., uk, br, tv, in, ly)
– Special domains (e.g., arpa)
– Corporate domains (...)

• Authoritative DNS servers
– Provides public records for hosts at an organization
– Can be maintained locally or by a service provider

• Recursive resolvers
– Big public servers, or local to a network
– Lots of caching



How a resolver works



Resolver operation

• Apps make recursive queries to local DNS 
server (1)
– Ask server to get answer for you

• Server makes iterative queries to remote 
servers (2,4,6)
– Ask servers who to ask next
– Cache results aggressively

DNS software architecture

• Two types of query
- Recursive
- Non-Recursive

• Apps make recursive queries to
local DNS server (1)

• Local server queries remote
servers non-recursively (2, 4, 6)

- Aggressively caches result
- E.g., only contact root on first query

ending .umass.edu



$ dig cs.brown.edu @10.1.1.10
; <<>> DiG 9.10.6 <<>> cs.brown.edu @10.1.1.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8536
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1220
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; ANSWER SECTION:
cs.brown.edu.            1800      IN      A        128.148.32.12

;; Query time: 69 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Tue Apr 19 09:03:39 EDT 2022
;; MSG SIZE  rcvd: 57



$ dig cs.brown.edu @e.root-servers.net

; <<>> DiG 9.10.6 <<>> cs.brown.edu @e.root-servers.net
[ . . .]
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS i.edu-servers.net.
edu. 172800 IN NS g.edu-servers.net.
[ . . .]

;; ADDITIONAL SECTION:
[ . . .]
i.edu-servers.net. 172800 IN A 192.43.172.30
g.edu-servers.net. 172800 IN A 192.42.93.30
b.edu-servers.net. 172800 IN A 192.33.14.30

;; Query time: 123 msec
;; SERVER: 2001:500:a8::e#53(2001:500:a8::e)
;; WHEN: Thu Oct 31 08:29:45 EDT 2024
;; MSG SIZE  rcvd: 839



$dig cs.brown.edu @192.33.14.30.  [192.33.14.30 was IP returned for b.edu-servers.net]   

; <<>> DiG 9.10.6 <<>> cs.brown.edu @192.33.14.30
[ . . . ]
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; AUTHORITY SECTION:
brown.edu. 172800 IN NS ns1.ucsb.edu.
brown.edu. 172800 IN NS bru-ns1.brown.edu.
brown.edu. 172800 IN NS bru-ns2.brown.edu.
brown.edu. 172800 IN NS bru-ns3.brown.edu.

;; ADDITIONAL SECTION:
ns1.ucsb.edu. 172800 IN A 128.111.1.1
ns1.ucsb.edu. 172800 IN AAAA 2607:f378::1
bru-ns1.brown.edu. 172800 IN A 128.148.248.11
bru-ns2.brown.edu. 172800 IN A 128.148.248.12
bru-ns3.brown.edu. 172800 IN A 128.148.2.13

 



$ dig cs.brown.edu @128.111.1.1  [128.111.1.1 was IP returned for ns1.ucsb.edu]
; <<>> DiG 9.10.6 <<>> cs.brown.edu @128.111.1.1
[ . . . ]

;; QUESTION SECTION:
;cs.brown.edu. IN A

;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12

;; Query time: 77 msec
;; SERVER: 128.111.1.1#53(128.111.1.1)
;; WHEN: Thu Oct 31 08:35:11 EDT 2024
;; MSG SIZE  rcvd: 57

 



dig:  DNS query/debugging tool



Where is the root server?

• Located in New York
• How do we make the root scale?

Verisign, New York, NY
 



DNS Root Servers

• 13 Root Servers (www.root-servers.org)
– Labeled A through M (e.g, A.ROOT-SERVERS.NET)

• Does this scale?

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F  Internet Software
    Consortium 
    Palo Alto, CA

K RIPE London

M WIDE Tokyo

A Verisign, New York, NY
C Cogent, Herndon, VA
D U Maryland College Park, MD
G US DoD Columbus, OH
H ARL Aberdeen, MD
J Verisign I Netnod, Stockholm



B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA 
(plus 157 other locations)

E NASA Mt View, CA (+70)
F  Internet Software
    Consortium,
    Palo Alto, CA
   (and 57 other locations)

M WIDE Tokyo
 plus Seoul, Paris,
 San Francisco, 
Osaka

A Verisign, New York, NY (also Frankfurt, HK, London, LA)
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago, Frankfurt and 3+)
D U Maryland College Park, MD (also in 106 other locations)
G US DoD Columbus, OH (+5)
H ARL Aberdeen, MD (also San Diego)
J Verisign (118 locations) I Netnod, Stockholm 

(plus 49 other locations)

K RIPE London (plus 41 other locations)

DNS Root Servers

• 13 Root Servers (www.root-servers.org)
– Labeled A through M (e.g, A.ROOT-SERVERS.NET)

• Remember anycast?





DNS Root Servers:  Today

From: www.root-servers.org

http://www.root-servers.org/


How it scales:  caching

Resolvers cache responses to avoid doing recursive/iterative queries
• Many messages => extra computation, extra latency

$ dig cs.brown.edu @10.1.1.10
;; ANSWER SECTION:
cs.brown.edu.            1800      IN      A        128.148.32.12



How it scales:  caching

Resolvers cache responses to avoid extra recursive/iterative queries
• Many messages => extra computation, extra latency

How long to cache? 
 =>  Every record has a TTL (in seconds), delete when it expires

$ dig cs.brown.edu @10.1.1.10
;; ANSWER SECTION:
cs.brown.edu.            1800      IN      A        128.148.32.12



Today

You
example.com

5.6.7.8DNS resolver

connect(example.com,
 80) A example.com?

5.6.7.8

How does this work in practice?  What can go wrong?



How it scales:  caching

DNS Resolvers cache responses to avoid doing recursive/iterative 
queries
• Many messages => extra computation, extra latency

How long to cache? 
 =>  Every record has a TTL (in seconds), delete when it expires

$ dig cs.brown.edu @10.1.1.10
;; ANSWER SECTION:
cs.brown.edu.            1800      IN      A        128.148.32.12



$ dig nytimes.com

;; ANSWER SECTION:
nytimes.com. 111 IN A 151.101.65.164
nytimes.com. 111 IN A 151.101.1.164
nytimes.com. 111 IN A 151.101.129.164
nytimes.com. 111 IN A 151.101.193.164

;; Query time: 40 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Thu Nov 09 08:42:41 EST 2023
;; MSG SIZE  rcvd: 104

Related:  redundant services via DNS
Can return multiple answers for one record
 => If a client can’t connect to first result, can try next one

DNS server usually shuffles answers on each response—why?  



Facebook DNS outage (2021)

BGP configuration bug:  Facebook withdraws all routes for its DNS servers to the 
Internet
 => Facebook DNS unreachable—not even Facebook could access their systems!

Traffic graph

Many writeups here

https://www.kentik.com/blog/facebooks-historic-outage-explained/
https://en.wikipedia.org/wiki/2021_Facebook_outage


Source

https://commons.wikimedia.org/wiki/File:Facebook_DNS_Outage_2021.png


DNS record types
RR Type Purpose Example

A IPv4 Address 128.148.56.2

AAAA IPv6 Address 2001:470:8956:20::1

CNAME Specifies an alias 
(“Canonical name”)

systems.cs.brown.edu. 86400 IN 
                             CNAME systems-v3.cs.brown.edu.
systems-v3.cs.brown.edu. 86400 IN A 128.148.36.51

NS DNS servers for a domain cs.brown.edu. 86400 IN NS br1.brown.edu

MX Mail servers MX <priority> <ip>
eg. MX 10 1.2.3.4

SOA Start of authority Information about who owns a zone

PTR Reverse IP lookup 7.34.148.128.in-addr.arpa. 86400 IN 
                          PTR quanto.cs.brown.edu.

SRV How to reach specific 
services (eg. host, port)

_minecraft._tcp.example.net 3600 
         SRV <priority> <weight> <port> <server IP>

More:  https://en.wikipedia.org/wiki/List_of_DNS_record_types

https://en.wikipedia.org/wiki/List_of_DNS_record_types
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(“Canonical name”)
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                             CNAME systems-v3.cs.brown.edu.
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eg. MX 10 1.2.3.4

SOA Start of authority Information about who owns a zone

PTR Reverse IP lookup 7.34.148.128.in-addr.arpa. 86400 IN 
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Reverse DNS

What if we want to map  IP address => domain name?  

Leverages hierarchy in IP addresses, but in reverse
 => How?  reverse the numbers: 12.32.148.128, then look that up



DNS Caching

• Recursive queries are expensive
• Caching greatly reduces overhead

– Top level servers very rarely change
– Popular sites visited often
– Local DNS server caches information from many users

• How long do you store a cached response?
– Original server tells you: TTL entry
– Server deletes entry after TTL expires



Reverse DNS

How do we get the other direction, IP address to name?
• Addresses have a natural hierarchy:

– 128.148.32.12

• Idea: reverse the numbers: 12.32.148.128 …
– and look that up in DNS

• Under what TLD?
– Convention: in-addr.arpa
– Lookup 12.32.148.128.in-addr.arpa
– in6.arpa for IPv6



DNS Protocol

• TCP/UDP port 53
• Most traffic uses UDP

– Lightweight protocol has 512 byte message limit
– Retry using TCP if UDP fails (e.g., reply truncated)

• Bit in query determines if query is recursive



DNS Example
$ dig cs.brown.edu @10.1.1.10
; <<>> DiG 9.10.6 <<>> cs.brown.edu @10.1.1.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8536
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1220
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; ANSWER SECTION:
cs.brown.edu.            1800      IN      A        128.148.32.12

;; Query time: 69 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Tue Apr 19 09:03:39 EDT 2022
;; MSG SIZE  rcvd: 57



DNS Example
% dig +norec cs.brown.edu @j.root-servers.net

; <<>> DiG 9.10.6 <<>> +norec cs.brown.edu @j.root-servers.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61618
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS l.edu-servers.net.
edu. 172800 IN NS m.edu-servers.net.

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
d.edu-servers.net. 172800 IN A 192.31.80.30
e.edu-servers.net. 172800 IN A 192.12.94.30

When server doesn’t know all info…



Example

dig . ns

dig +norec www.cs.brown.edu @a.root-servers.net

dig +norec www.cs.brown.edu @a.edu-servers.net

dig +norec www.cs.brown.edu @bru-ns1.brown.edu

www.cs.brown.edu. 86400 IN A 128.148.32.110



Resource Records

All DNS info represented as resource records (RR)
name [ttl] [class] type rdata

– name: domain name
– TTL: time to live in seconds
– class: for extensibility, normally IN (1) “Internet”
– type: type of the record
– rdata: resource data dependent on the type

• Example RRs
www.cs.brown.edu. 86400 IN A 128.148.32.110
cs.brown.edu.  86400 IN NS dns.cs.brown.edu.
cs.brown.edu.  86400 IN NS ns1.ucsb.edu.



DNS record types

RR Type Purpose Example

A IPv4 Address 128.148.56.2

AAAA IPv6 Address 2001:470:8956:20::1

CNAME Specifies an alias 
(“Canonical name”)

systems.cs.brown.edu. 86400 IN 
                             CNAME systems-v3.cs.brown.edu.
systems-v3.cs.brown.edu. 86400 IN A 128.148.36.51

MX Mail servers MX <priority> <ip>
eg. MX 10 1.2.3.4

SOA Start of authority Information about who owns a zone

PTR Reverse IP lookup 7.34.148.128.in-addr.arpa. 86400 IN 
                          PTR quanto.cs.brown.edu.

SRV How to reach specific 
services (eg. host, port)

_minecraft._tcp.example.net 3600 
         SRV <priority> <weight> <port> <server IP>

More:  https://en.wikipedia.org/wiki/List_of_DNS_record_types

https://en.wikipedia.org/wiki/List_of_DNS_record_types


Inserting a Record in DNS

Your new startup helpme.com



Some important details

• How do local servers find root servers?
– DNS lookup on a.root-servers.net ?
– Servers configured with root cache file
– Contains root name servers and their addresses

.                        3600000  IN  NS    A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET.      3600000      A     198.41.0.4
...

• How do you get addresses of other name servers?
– To obtain the address of www.cs.brown.edu, ask a.edu-servers.net, says a.root-servers.net
– How do you find a.edu-servers.net?
– Glue records: A records in parent zone



Other uses of DNS

• Local multicast DNS
– Used for service discovery
– Made popular by Apple
– This is how you learn of different Apple TVs in the building

• Load balancing
• CDNs (more on this later)



Reliability

• Answers may contain several alternate servers
• Try alternate servers on timeout

– Exponential backoff when retrying same server

• Use same identifier for all queries
– Don’t care which server responds, take first answer



Inserting a Record in DNS

• Your new startup helpme.com
• Get a block of addresses from ISP

– Say 212.44.9.0/24

• Register helpme.com at namecheap.com (for ex.)
– Provide name and address of your authoritative name server (primary and secondary)
– Registrar inserts RR pair into the .com TLD server:

• helpme.com NS dns1.helpme.com
• dns1.helpme.com A 212.44.9.120

• Configure your authoritative server (dns1.helpme.com)
– Type A record for www.helpme.com
– Type MX record for helpme.com



Inserting a Record in DNS, cont

• Need to provide reverse PTR bindings
– E.g., 212.44.9.120 -> dns1.helpme.com

• Configure your dns server to serve the 9.44.212.in-addr.arpa zone
– Need to add a record of this NS into the parent zone (44.212.in-addr.arpa)

• Insert the bindings into the 9.44.212.in-addr.arpa zone



DNS Security

• You go to starbucks, how does your browser find www.google.com?
– Ask local name server, obtained from DHCP

• Can you trust this DNS server?



Great Firewall of CIT

If attacker is on the path (say, it is the ISP, or a malicious version of TStaff), what 
could they do?  

– Can sniff all DNS queries
– Send fake responses back first
– Could do this selectively, to direct facebook.com to cs.brown.edu, for example…



Great Firewall of CIT

If attacker is on the path (say, it is the ISP, or a malicious version of TStaff), what 
could they do?  



https://blog.thousandeyes.com/monitoring-dns-in-china/



Public DNS

Public DNS resolvers provided by cloud companies and ISPs
• 8.8.8.8 (Google)
• 1.1.1.1 (Cloudflare)
• … and others

Why do this?





“Helpful” ISPs

• Many ISPs hijack NXDOMAIN responses to “help” by offering search and 
advertisement related to the domain

• E.g., www.bicycleisntadomain.com doesn’t (currently) exist
– Could return a page with search and ads on bicycles (or domain registrations?)

http://www.bicycleisntadomain.com/


What can be done?

Some defenses against DNS spoofing/hijacking



What can be done?

Some defenses against DNS spoofing/hijacking
• DNSSEC:  protocol to sign/verify hierarchy of DNS lookups

– Expensive to deploy, hierarchy must support at all levels
– APNIC DNSSEC monitor:  https://stats.labs.apnic.net/dnssec
– https://www.internetsociety.org/resources/deploy360/2012/nist-ipv6-and-dnssec-statistics-6/ 

• Tunneling DNS:  client uses DNS via more secure protocol
– DNS over HTTPS
– DNS over TLS

https://stats.labs.apnic.net/dnssec
https://www.internetsociety.org/resources/deploy360/2012/nist-ipv6-and-dnssec-statistics-6/


More on DNS



Structure of a DNS Message

• Same format for queries and replies
– Query has 0 RRs in Answer/Authority/Additional
– Reply includes question, plus has RRs

• Authority allows for delegation
• Additional for glue, other RRs client might need

Structure of a DNS message
+---------------------+

| Header |

+---------------------+

| Question | the question for the name server

+---------------------+

| Answer | RRs answering the question

+---------------------+

| Authority | RRs pointing toward an authority

+---------------------+

| Additional | RRs holding additional information

+---------------------+

• Same message format for queries and replies
- Query has zero RRs in Answer/Authority/Additional sections

- Reply includes question, plus has RRs

• Authority allows for delegation

• Additional for glue + other RRs client might need



Header format

• Id: match response to query; QR: 0 query/1 response
• RCODE: error code. 
• AA: authoritative answer, TC: truncated, 
• RD: recursion desired, RA: recursion available

Header format
1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ID |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

|QR| Opcode |AA|TC|RD|RA| Z | RCODE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QDCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ANCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| NSCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ARCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

• QR – 0=query, 1=response

• RCODE – error code

• AA=authoritative answer, TC=truncated,
RD=recursion desired, RA=recursion available



Other RR Types

• CNAME (canonical name): specifies an alias
www.google.com.  446199 IN CNAME www.l.google.com.
www.l.google.com. 300 IN A 72.14.204.147

• MX record: specifies servers to handle mail for a domain (the part after the @ in 
email addr)
– Different for historical reasons

• SOA (start of authority)
– Information about a DNS zone and the server responsible for the zone

• PTR (reverse lookup)
7.34.148.128.in-addr.arpa. 86400 IN PTR quanto.cs.brown.edu.



More on CC



An Introduction to Computer Networks, Release 2.0.6

TCP sawtooth is specific to TCP Reno and related TCP implementations that share Reno’s additive-
increase/multiplicative-decrease mechanism.

time

cwnd

TCP Sawtooth, red curve represents the network capacity

During periods of no loss, TCP’s cwnd increases linearly; when a loss occurs, TCP sets cwnd = cwnd/2.
This diagram is an idealization as when a loss occurs it takes the sender some time to discover it, perhaps as
much as the TimeOut interval.

The fluctuation shown here in the red ceiling curve is somewhat arbitrary. If there are only one or two
other competing senders, the ceiling variation may be quite dramatic, but with many concurrent senders the
variations may be smoothed out.

For some TCP sawtooth graphs created through actual simulation, see 31.2.1 Graph of cwnd v time and
31.4.1 Some TCP Reno cwnd graphs.

19.1.1.1 A first look at fairness

The transit capacity of the path is more-or-less unvarying, as is the physical capacity of the queue at the
bottleneck router. However, these capacities are also shared with other connections, which may come and
go with time. This is why the ceiling does vary in real terms. If two other connections share a path with
total capacity 60 packets, the “fairest” allocation might be for each connection to get about 20 packets as its
share. If one of those other connections terminates, the two remaining ones might each rise to 30 packets.
And if instead a fourth connection joins the mix, then after equilibrium is reached each connection might
hope for a fair share of 15 packets.

Will this kind of “fair” allocation actually happen? Or might we end up with one connection getting 90% of
the bandwidth while two others each get 5%?

Chiu and Jain [CJ89] showed that the additive-increase/multiplicative-decrease algorithm does indeed con-
verge to roughly equal bandwidth sharing when two connections have a common bottleneck link, provided
also that

19.1 Basics of TCP Congestion Management 435

Traditional, Loss-based CC



An Introduction to Computer Networks, Release 2.0.6

TCP sawtooth is specific to TCP Reno and related TCP implementations that share Reno’s additive-
increase/multiplicative-decrease mechanism.

time

cwnd

TCP Sawtooth, red curve represents the network capacity

During periods of no loss, TCP’s cwnd increases linearly; when a loss occurs, TCP sets cwnd = cwnd/2.
This diagram is an idealization as when a loss occurs it takes the sender some time to discover it, perhaps as
much as the TimeOut interval.

The fluctuation shown here in the red ceiling curve is somewhat arbitrary. If there are only one or two
other competing senders, the ceiling variation may be quite dramatic, but with many concurrent senders the
variations may be smoothed out.

For some TCP sawtooth graphs created through actual simulation, see 31.2.1 Graph of cwnd v time and
31.4.1 Some TCP Reno cwnd graphs.

19.1.1.1 A first look at fairness

The transit capacity of the path is more-or-less unvarying, as is the physical capacity of the queue at the
bottleneck router. However, these capacities are also shared with other connections, which may come and
go with time. This is why the ceiling does vary in real terms. If two other connections share a path with
total capacity 60 packets, the “fairest” allocation might be for each connection to get about 20 packets as its
share. If one of those other connections terminates, the two remaining ones might each rise to 30 packets.
And if instead a fourth connection joins the mix, then after equilibrium is reached each connection might
hope for a fair share of 15 packets.

Will this kind of “fair” allocation actually happen? Or might we end up with one connection getting 90% of
the bandwidth while two others each get 5%?

Chiu and Jain [CJ89] showed that the additive-increase/multiplicative-decrease algorithm does indeed con-
verge to roughly equal bandwidth sharing when two connections have a common bottleneck link, provided
also that

19.1 Basics of TCP Congestion Management 435

=> Additive Increase, Multiplicative Decrease (AIMD)

Traditional, Loss-based CC
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time

cwnd

TCP Tahoe Sawtooth, red curve represents the network capacity
Slow Start is used after each packet loss until ssthresh is reached

timeout

RFC 2581 allows slow start to begin with cwnd=2.

19.2.3 Slow-Start Multiple Drop Example

Slow start has the potential to cause multiple dropped packets at the bottleneck link; packet losses continue
for quite some time because the TCP sender is slow to discover them. The network topology is as follows,
where the A–R link is infinitely fast and the R–B link has a bandwidth in the R›ÑB direction of 1 packet/ms.

A R Binfinitely fast 1 pkt/ms

Assume that R has a queue capacity of 100, not including the packet it is currently forwarding to B,
and that ACKs travel instantly from B back to A. In this and later examples we will continue to use the
Data[N]/ACK[N] terminology of 8.2 Sliding Windows, beginning with N=1; TCP numbering is not done
quite this way but the distinction is inconsequential.

When A uses slow-start here, the successive windowfuls will almost immediately begin to overlap. A will
send one packet at T=0; it will be delivered at T=1. The ACK will travel instantly to A, at which point A
will send two packets. From this point on, ACKs will arrive regularly at A at a rate of one per second. Here
is a brief chart:
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In practice:  AIMD + Slow Start (SS)
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BBR:  what’s different

“BBR congestion control”

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf


BBR

From: https://labs.ripe.net/Members/gih/bbr-tcp

https://labs.ripe.net/Members/gih/bbr-tcp


Another way:  ECN

What if routers/switches could help? 

• Routers/switches set bit in packet when experiencing congestion
• When sender sees congestion bit, scales back cwnd

In theory, no dropped packets!  



Another way:  ECN

What if routers/switches could help?  

• Routers/switches set bit in packet when experiencing congestion
• When sender sees congestion bit, scales back cwnd

In theory, no dropped packets!  



Special purpose example:  DCTCP (2010)

Designed for datacenter usage only 

• Want to avoid queuing as much as possible
• Routers/switches mark packets with ECN bit in header
• When this happens, senders scale back dramatically



Timeline of (some!) congestion control implementations

“The great Internet congestion control census” (2019)

https://dl.acm.org/doi/abs/10.1145/3366693

