
CSCI-1680
HTTP II

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

• Should have done your TCP Milestone II at this point

• TCP is due next Friday (11/22)
=> Look for some more testing/grading/SRC info soon

• Will announce some preliminary final project info next week

Warmup
Browser wants to fetch: http://example.com/page.html

Assuming no caching, what is the minimum number of packets the
browser needs to wait for?

Webserver
example.com

Browser

> nc cs.brown.edu 80
GET / HTTP/1.0
Host: cs.brown.edu
Content-Type: text/html
Accept-Language: en

HTTP/1.1 200 OK
Date: Thu, 24 Mar 2011 12:58:46 GMT
Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT
ETag: "840a88b-236c-49f3992853bc0"
Accept-Ranges: bytes
Content-Length: 9068
Vary: Accept-Encoding
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en”>
...

HTTP Request
Method:

– GET: current value of resource, run program
– POST: update a resource, provide input for a program. . .

Headers: useful info about request
– E.g., desired language, text encoding

HTTP Request Format

method URL version ��

header field name value ��

header field name value ��

��

request

headers

body

blank line

• Request types: GET, POST, HEAD, PUT, DELETE

• A URL given to browser: http://localhost:8000/

• Resulting request: GET / HTTP/1.1

- Someday, requests will contain the full URL not just path

HTTP Responses
Status codes to indicate something about the result
• 1xx: Information e.g, 100 Continue
• 2xx: Success e.g., 200 OK
• 3xx: Redirection e.g., 302 Found (elsewhere),
• 4xx: Client Error e.g., 403 Forbidden, 404 Not Found
• 5xx: Server Error e.g, 503 Service Unavailable

HTTP Response Format
version status code phrase ��

header field name value ��

header field name value ��

��

status

headers

body

blank line

• 1xx codes: Informational

• 2xx codes: Successes

• 3xx codes: Redirection

• 4xx codes: Client Error

• 5xx codes: Server Error

It gets worse
Modern web traffic almost always uses HTTPS: https://example.com/page.html
 => Creates a secure transport layer to prevent eavesdropping, etc
(more on this later)

Webserver
example.com

Browser

How does a browser load a page?

• Click a link, type in URL => browser fetches main page

Webserver
example.com

Browser

How does a browser load a page?

• Click a link, type in URL => browser fetches main page
• Main page has links to more resources => need to fetch these too!

– Images, CSS, Javascript, etc.

Webserver
example.com

Browser

How does a browser load a page?

• Click a link, type in URL => browser fetches main page
• Main page has links to more resources => need to fetch these too!

– Images, CSS, Javascript, etc.

• New resources might load yet more resources…

Recursive process with many dependencies!

Early websites: not many dependencies,
usually served by one server

Now???

On a modern webpage…

On a modern webpage…

• Huge number of dependencies, external resources
– … from many different locations, not just one server!

• Lots of asynchronous operations => loading new resources as
you are using the page

• Lots of dynamic content => generated by the server specifically
for you (your feed, ad data, …)

How to make this fast?

How to make this fast?

What’s important for performance?

Observation: lots of small requests

Latency is a problem! Need many RTTs just to fetch one resource!

Observation: lots of small requests

Latency is a problem! Need many RTTs just to fetch one resource!

HTTP/1.0: One TCP connection per request!

Can we do better?

HTTP/1.1 (1996): Persistent connections
 => Reuse TCP connection to for multiple requests

Problems?

Can we do better?

HTTP/1.1 (1996): Persistent connections
 => Reuse TCP connection to for multiple requests

Problems?
ÞOne big request blocks others => head of line blocking
=> Same if connection has packet loss
=> Doesn’t help when fetching from multiple locations

What can be done?

HTTP/1.1 Request

GET / HTTP/1.1
Host: localhost:8000
User-Agent: Mozilla/5.0 (Macinto ...
Accept: text/xml,application/xm ...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

What can be done?

Pipelining: have multiple “in-flight” requests at once

Two methods
• Multiple TCP connections in parallel

• Change the HTTP protocol: multiple requests per connection

What can be done?

Pipelining: have multiple “in-flight” requests at once

Two methods
• Multiple TCP connections in parallel
 => Browsers often do this (up to a limit)

• Change the HTTP protocol: multiple requests per connection
 => Newer HTTP versions: HTTP/2, HTTP/3

HTTP/2 (2015)

Adds support for multiplexed streams on one connection

https://www.twilio.com/blog/2017/10/http2-issues.html

What happens if a packet gets dropped?

HTTP/2 (2015)

Adds support for multiplexed streams on one connection

TCP provides a single, ordered byte stream
 => doesn’t know about multiple connections!

https://www.twilio.com/blog/2017/10/http2-issues.html

HTTP/2 (2015)

Adds support for multiplexed streams on one connection

TCP provides a single, ordered byte stream
 => doesn’t know about multiple connections!

https://www.twilio.com/blog/2017/10/http2-issues.html

Encumbered by TCP’s semantics:
If a packet is lost, all streams suffer! 😭 😭 😭

=> Head of line blocking

HTTP/3 (2022): HTTP + QUIC

HTTP/3 (2022): HTTP + QUIC

QUIC (RFC9000): Newer transport-layer protocol, same goals as TCP

HTTP/3 (2022): HTTP + QUIC

QUIC (RFC9000): Newer transport-layer protocol, same goals as TCP
– Supports multiple streams at once
– Various tricks to reduce message size and latency
– Integrates security by default (TLS)

HTTP/3 (2022): HTTP + QUIC

QUIC (RFC9000): Newer transport-layer protocol, same goals as TCP
– Supports multiple streams at once
– Various tricks to reduce message size and latency
– Integrates security by default (TLS)

• By moving multiplexing into the transport layer, can do so in a way
that benefits HTTP (no head of line blocking!)

Comparison: QUIC’s handshake

http://httpwg.org/specs/rfc7540.html

What else can we improve performance?

Caching: in the browser

What parts of this can be cached?

How do we know what to cache?

Headers returned with response
 => if caching is possible, how long to cache, etc.
=> Also possible to do conditional requests “If-Modified-Since” => server doesn’t send
payload unless the resource has changed

How to Control Caching?

• Server sets options
– Expires header
– No-Cache header

• Client can do a conditional request:
– Header option: if-modified-since
– Server can reply with 304 NOT MODIFIED

Proxy caches

Big Requests

• Problem is throughput on edge link

• Use an HTTP proxy cache
- Can also improve latency!

clients

server

Internet

proxy

cache

Classic way: proxy cache

Þ Client first sends traffic to proxy server, which forwards to Internet
Þ Proxy acts as cache

Implications
 - Cache data close to clients (locality)
 - Can also use to enforce security policies, or circumvent them (eg. open proxies)

Caching throughout the network?
Server

Clients

Backbone ISP

ISP-1 ISP-2

Reverse Proxies

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Idea: cache within network, appears like normal server
=> Reduce load on server, distribute load, do other tasks…

=> Also called accelerators

Reverse Proxies

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies
Reasons for reverse proxying

How well does caching work?

• Very well, up to a point
– Large overlap in requested objects
– Objects with one access place upper bound on hit ratio

• Example: Wikipedia
– About 400 servers, 100 are HTTP Caches (Squid)
– 85% Hit ratio for text, 98% for media

Where to cache content?

• Client (browser): avoid extra network transfers
• Server: reduce load on the server
• Service Provider: reduce external traffic

Server

Clients

Backbone ISP

ISP-1 ISP-2

Content Distribution Networks (CDNs)

Companies that specialize in providing caching services
(among other things)
=> Akamai, Cloudflare, …

Content Distribution Networks (CDNs)

Companies that specialize in providing caching services
(among other things)
=> Akamai, Cloudflare, …

• Provides caching throughout network

• Can also do some processing

An Example CDN

Clients

ISP-1

Server

Forward proxies

Backbone ISP

ISP-2

CDN

dig www.brown.edu @10.1.1.10

;; ANSWER SECTION:
www.brown.edu. 3600 IN CNAME www.brown.edu.cdn.cloudflare.net.
www.brown.edu.cdn.cloudflare.net. 195 IN A 104.18.2.173
www.brown.edu.cdn.cloudflare.net. 195 IN A 104.18.3.173

;; Query time: 75 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Thu Nov 14 08:14:16 EST 2024
;; MSG SIZE rcvd: 120

Link

DDoS mitigation via CDN

https://blog.cloudflare.com/how-cloudflare-auto-mitigated-world-record-3-8-tbps-ddos-attack/

Content Distribution Networks (CDNs)

Companies that specialize in providing caching services
(among other things)
=> Akamai, Cloudflare, …

• Provide both caching throughout network
– Pull: result from client requests
– Push: expectation of high access rates to some objects

• Can also do some processing
– Deploy code to handle some dynamic requests
– Can do other things, such as transcoding

How Akamai works

Akamai has cache servers deployed close to clients
– Co-located with many ISPs

• Challenge: make same domain name resolve to a proxy close to the client

• Lots of DNS tricks. BestBuy is a customer
– Delegate name resolution to Akamai (via a CNAME)

Other CDNs

• Akamai, Limelight, Cloudflare
• Amazon, Facebook, Google, Microsoft
• Netflix
• Where to place content?
• Which content to place? Pre-fetch or cache?

DNS Resolution

dig www.bestbuy.com

;; ANSWER SECTION:
www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.

a1105.b.akamai.net. 20 IN A 198.7.236.235

a1105.b.akamai.net. 20 IN A 198.7.236.240
;; AUTHORITY SECTION:

b.akamai.net. 1101 IN NS n1b.akamai.net.
b.akamai.net. 1101 IN NS n0b.akamai.net.
;; ADDITIONAL SECTION:

n0b.akamai.net. 1267 IN A 24.143.194.45
n1b.akamai.net. 2196 IN A 198.7.236.236

• n1b.akamai.net finds an edge server close to the client’s local
resolver
• Uses knowledge of network: BGP feeds, traceroutes. Their secret sauce…

Example

From Brown
dig www.bestbuy.com
;; ANSWER SECTION:
www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.
a1105.b.akamai.net. 20 IN A 198.7.236.235
a1105.b.akamai.net. 20 IN A 198.7.236.240

– Ping time: 2.53ms

From Berkeley, CA
a1105.b.akamai.net. 20 IN A 198.189.255.200
a1105.b.akamai.net. 20 IN A 198.189.255.207

– Ping time: 3.20ms

Example
dig www.bestbuy.com
;; QUESTION SECTION:
;www.bestbuy.com. IN A

;; ANSWER SECTION:
www.bestbuy.com. 2530 IN CNAME www.bestbuy.com.edgekey.net.
www.bestbuy.com.edgekey.net. 85 IN CNAME e1382.x.akamaiedge.net.
e1382.x.akamaiedge.net. 16 IN A 104.88.86.223

;; Query time: 6 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Thu Nov 16 09:43:11 2017
;; MSG SIZE rcvd: 123

traceroute to 104.88.86.223 (104.88.86.223), 64 hops max, 52 byte packets
1 router (192.168.1.1) 2.461 ms 1.647 ms 1.178 ms
2 138.16.160.253 (138.16.160.253) 1.854 ms 1.509 ms 1.462 ms
3 10.1.18.5 (10.1.18.5) 1.886 ms 1.705 ms 1.707 ms
4 10.1.80.5 (10.1.80.5) 4.276 ms 6.444 ms 2.307 ms
5 lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.804 ms 1.870 ms 1.727 ms
6 131.109.200.1 (131.109.200.1) 2.841 ms 2.587 ms 2.530 ms
7 host-198-7-224-105.oshean.org (198.7.224.105) 4.421 ms 4.523 ms 4.496 ms
8 5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.099 ms 3.974 ms 4.290 ms
9 * ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 4.689 ms 4.109 ms

10 ae-6.r24.nycmny01.us.bb.gin.ntt.net (129.250.4.114) 8.863 ms 10.205 ms 10.477 ms
11 ae-1.r08.nycmny01.us.bb.gin.ntt.net (129.250.5.62) 9.298 ms

ae-1.r07.nycmny01.us.bb.gin.ntt.net (129.250.3.181) 10.008 ms 8.677 ms
12 ae-0.a00.nycmny01.us.bb.gin.ntt.net (129.250.3.94) 8.543 ms 7.935 ms

ae-1.a00.nycmny01.us.bb.gin.ntt.net (129.250.6.55) 9.836 ms
13 a104-88-86-223.deploy.static.akamaitechnologies.com (104.88.86.223) 9.470 ms 8.483
ms 8.738 ms

dig www.bestbuy.com @109.69.8.51

e1382.x.akamaiedge.net. 12 IN A 23.60.221.144

traceroute to 23.60.221.144 (23.60.221.144), 64 hops max, 52 byte packets
1 router (192.168.1.1) 44.072 ms 1.572 ms 1.154 ms
2 138.16.160.253 (138.16.160.253) 2.460 ms 1.736 ms 2.722 ms
3 10.1.18.5 (10.1.18.5) 1.841 ms 1.649 ms 3.348 ms
4 10.1.80.5 (10.1.80.5) 2.304 ms 15.208 ms 2.895 ms
5 lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.784 ms 4.744 ms 1.566 ms
6 131.109.200.1 (131.109.200.1) 3.581 ms 5.866 ms 3.238 ms
7 host-198-7-224-105.oshean.org (198.7.224.105) 4.288 ms 6.218 ms 8.332 ms
8 5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.209 ms 6.103 ms 5.031 ms
9 ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 3.982 ms 5.824 ms 4.514 ms
10 ae-6.r24.nycmny01.us.bb.gin.ntt.net (129.250.4.114) 9.735 ms 12.442 ms 8.689 ms
11 ae-9.r24.londen12.uk.bb.gin.ntt.net (129.250.2.19) 81.098 ms 81.343 ms 81.120 ms
12 ae-6.r01.mdrdsp03.es.bb.gin.ntt.net (129.250.4.138) 102.009 ms 110.595 ms 103.010
ms
13 81.19.109.166 (81.19.109.166) 99.426 ms 93.236 ms 101.168 ms
14 a23-60-221-144.deploy.static.akamaitechnologies.com (23.60.221.144) 94.884 ms 92.779
ms 93.281 ms

http://www.bestbuy.com/

Forward Proxies

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

Forward Proxies

Typically done by ISPs or Enterprises
– Reduce network traffic and decrease latency
– May be transparent or configured

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser DNS

example.com?

GET /page.html

200 OK + (Content of page.html)

Server returns response (in this case, with HTML)

Welcome!

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Thu, 24 Mar 2011 12:58:46 GMT
Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT
ETag: "840a88b-236c-49f3992853bc0"
Accept-Ranges: bytes
Content-Length: 9068
Vary: Accept-Encoding
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en”>
...

HTTP Cookies

• Client-side state maintenance
– Client stores small state on behalf of server
– Sends request in future requests to the server
– Cookie value is meaningful to the server (e.g., session id)

• Can provide authentication
1. Request

2. Response
Set-Cookie: XYZ

3. Request
Cookie: XYZ

ServerClient

Modern web pages and HTTP

• Web APIs: HTTP response/requests are a standard way to ask for anything
• Modern web pages: use Javascript to make lots of requests without reloading

page
– And can use APIs for all kinds of other stuff

Example: Github public API
$ curl https://api.github.com/users/ndemarinis
{
 "login": "ndemarinis",
 "id": 1191319,
 "node_id": "MDQ6VXNlcjExOTEzMTk=",
 "avatar_url": "https://avatars.githubusercontent.com/u/1191319?v=4",
 "gravatar_id": "",
 "url": "https://api.github.com/users/ndemarinis",
 "type": "User",
 "site_admin": false,
 "name": "Nick DeMarinis",
 "blog": "https://vty.sh",
 "twitter_username": null,
 "public_repos": 10,
 . . .
}

Modern web pages and HTTP

• Web APIs: HTTP response/requests are a standard way to ask for anything
• Modern web pages: use Javascript to make lots of requests without reloading

page
– And can use APIs for all kinds of other stuff

Example: Github public API
$ curl https://api.github.com/users/ndemarinis
{
 "login": "ndemarinis",
 "id": 1191319,
 "node_id": "MDQ6VXNlcjExOTEzMTk=",
 "avatar_url": "https://avatars.githubusercontent.com/u/1191319?v=4",
 "gravatar_id": "",
 "url": "https://api.github.com/users/ndemarinis",
 "type": "User",
 "site_admin": false,
 "name": "Nick DeMarinis",
 "blog": "https://vty.sh",
 "twitter_username": null,
 "public_repos": 10,
 . . .
}

HTTP: What matters for performance?

Depends on type of request
– Lots of small requests (objects in a page)
– Some big requests (large download or video)

Small Requests

• Latency matters
• RTT dominates
• Major steps:

– DNS lookup (if not cached)
– Opening a TCP connection
– Setting up TLS (optional, but now common)
– Actually sending the request and receiving response

How can we reduce the number of connection setups?

• Keep the connection open and request all objects serially
– Works for all objects coming from the same server
– Which also means you don’t have to “open” the window each time

Persistent connections (HTTP/1.1)

Small Requests (cont)

• Second problem is that requests are serialized
– Similar to stop-and-wait protocols!

• Two solutions
– Pipelined requests (similar to sliding windows)
– Parallel Connections

• Browsers implement this differently—see “Inspect element”

– How are these two approaches different?

