
CSCI-1680
DNS

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

• TCP due this Friday (11/22)
– See Ed for latest on bugs with reference
– Look for an update on testing resources, SRC component (due after

Thanksgiving)
– It’s going to be okay.

• Grading update, final project info out later this week

Breathe

Warmup
If a client A makes two separate HTTP requests to example.com, does
the server know both requests came from A?
Explain why/why not.

example.comA’s browser

Reverse proxy: proxy server that lives somewhere in the network, transparent to the
client

A simple reverse proxy
<VirtualHost *:443>
 ServerName test.cs1680.systems
 ErrorLog "/var/log/httpd/test-error_log"
 CustomLog "/var/log/httpd/test-access_log" combined

 ProxyPass "/" "http://127.0.0.1:9999/"
 ProxyPassReverse "/" "http://127.0.0.1:9999/"

 SSLCertificateFile /etc/letsencrypt/live/test.cs1680.systems/fullchain.pem
 SSLCertificateKeyFile /etc/letsencrypt/live/test.cs1680.systems/privkey.pem
 Include /etc/letsencrypt/options-ssl-apache.conf
</VirtualHost>

Content Distribution Networks (CDNs)

Companies that specialize in providing caching services
(among other things)
=> Akamai, Cloudflare, …

Content Distribution Networks (CDNs)

Companies that specialize in providing caching services
(among other things)
ÞAkamai, Cloudflare, …

• Provides caching throughout network
• Can also do some processing
• Useful for security

Clients

ISP-1

Application servers

Backbone ISP

ISP-2

CDNs for securing traffic

DDoS attacks: overwhelm a target host/network with packets, denying resources for
legitimate traffic

DDoS attacks: overwhelm a target host/network with packets, denying resources for
legitimate traffic
 => Often performed by ”botnets” of compromised devices
 => Attack traffic can take many forms: lots of SYNs, DNS requests, exploiting bugs
in protocols, …

ÞWant to learn more? CS 1660.

Link

DDoS mitigation via CDN

https://blog.cloudflare.com/how-cloudflare-auto-mitigated-world-record-3-8-tbps-ddos-attack/

HTTP: what more do we need?

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser

Welcome!

Example: Instant Messaging (~2005)

Example: Instant Messaging (~2005)

Old chat/IM applications: one TCP connection
=> Can we still do that?

Can we do this with HTTP?

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser

GET /page.html

200 OK + (Content of page.html)

Welcome!

HTTP serverClient

Request: GET /thing

HTTP serverClient

Request: GET /thing

Response: 200 OK + thing

HTTP serverClient

Request: GET /thing

Response: 200 OK + thing

HTTP request: a way to fetch (GET) or send (POST) some object
• Doesn’t need to be a web page
• Doesn’t need to be from a browser

When does this not work?

HTTP
server

Browser

Request: GET /thing

Response: 200 OK + thing

Request, response model doesn’t always fit…

=> Server may need to send data asynchronously!

But it’s TCP right?

HTTP
server

Browser

Request: GET /thing

Response: 200 OK + thing

But it’s TCP right?

HTTP
server

Browser

Request: GET /thing

Response: 200 OK + thing

TCP is bidirectional, but the HTTP protocol is not.

WebserverBrowser

What can be done?

Can the server connect to the client?

WebserverBrowser

What can be done?

Can the server connect to the client?

Almost always no.
ÞNAT, Firewalls, security policies are in the way
ÞDon’t want to allow browser to open a listen port => security risk!

How to wait for the server’s response?

for {
 resp, err := doRequest(“http://example.com/do-you-have-my-data”)
 if resp != nil {.
 doThing(resp)
 }
 time.Sleep(1 * time.Second)
}

One way: Polling

How to wait for the server’s response?

for {
 resp, err := doRequest(“http://example.com/do-you-have-my-data”)
 // ^ Assume this will block for very long time

 doThing(resp)
}

Another way: long polling

How to wait for the server’s response?

for {
 resp, err := doRequest(“http://example.com/do-you-have-my-data”)
 // ^ Assume this will block for very long time

 doThing(resp)
}

Problems?

Another way: long polling
ÞRequire server to hold connection open with long timeout,
respond when data is ready

Another way: Websockets (RFC6455, 2011)

Another way: Websockets (RFC6455, 2011)

Persistent, bidirectional transport layer between browser and server
=> Can start with an HTTP request!

GET /chat
Host: javascript.info
Origin: https://javascript.info
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Key: Iv8io/9s+lYFgZWcXczP8Q==
Sec-WebSocket-Version: 13

Push notifications

HTTP serverClient

Request: GET /thing

Response: 200 OK + thing

ÞGeneric way to ask the server to do something => an API over the network!

HTTP request: a way to fetch (GET) or send (POST) some object
• Doesn’t need to be a web page
• Doesn’t need to be from a browser

Modern websites don’t just load pages when you click links:

Every modern webpage is filled with arbitrary code, usually Javascript, which
can make more requests:

async function doRequest() {
 const response = await fetch("http://example.com/thing.json");
 const data = await response.json();
 console.log(data);
}

Can make requests when….
• User does something (click button, scroll, ...)
• Periodic events, timers, etc
• …

Modern websites don’t just load pages when you click links:

Every modern webpage is filled with arbitrary code, usually Javascript, which
can make more requests:

async function doRequest() {
 const response = await fetch("http://example.com/thing.json");
 const data = await response.json();
 console.log(data);
}

Modern websites don’t just load pages when you click links:

Every modern webpage is filled with arbitrary code, usually Javascript, which
can make more requests:

async function doRequest() {
 const response = await fetch("http://example.com/thing.json");
 const data = await response.json();
 console.log(data);
}

Can make requests when….
• User does certain action
• Periodic events, timers, etc
• …

Modern websites don’t just load pages when you click links:

Every modern webpage is filled with arbitrary code, usually Javascript, which
can make more requests:

async function doRequest() {
 const response = await fetch("http://example.com/thing.json");
 const data = await response.json();
 console.log(data);
}

Can make requests when….
• User does certain action
• Periodic events, timers, etc
• …

“Arbitrary code”… from a web page?
Sound sketchy? It can be. Take CS1660.

HTTP

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Thu, 24 Mar 2011 12:58:46 GMT
Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT
ETag: "840a88b-236c-49f3992853bc0"
Accept-Ranges: bytes
Content-Length: 9068
Vary: Accept-Encoding
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en”>

Example: Github public API
$ curl https://api.github.com/users/ndemarinis
{
 "login": "ndemarinis",
 "id": 1191319,
 "node_id": "MDQ6VXNlcjExOTEzMTk=",
 "avatar_url": "https://avatars.githubusercontent.com/u/1191319?v=4",
 "gravatar_id": "",
 "url": "https://api.github.com/users/ndemarinis",
 "type": "User",
 "site_admin": false,
 "name": "Nick DeMarinis",
 "blog": "https://vty.sh",
 "twitter_username": null,
 "public_repos": 10,
 . . .
}

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser DNS

example.com?

GET /page.html

200 OK + (Content of page.html)

Server returns response (in this case, with HTML)

Welcome!

