
CSCI-1680
APIs

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

TCP officially due tomorrow (Friday, Nov 22)
– Lots of office hours in the meantime, I will add some more
– Monday 11/25: one day late

– Like with IP: you can continue to make small bugfixes after the deadline
• OK: Fixing small bugs, README, capture files, code cleanup

• Not OK: eg. implementing sendfile/recvfile, teardown, submitting
untested code

– Grading meetings: after break

What’s a protocol?

Warmup: How do you define a protocol?
Describe it to someone who hasn’t taken 1680.

Warmup: What’s a protocol?

Describe it to someone who hasn’t taken 1680.

How do programs communicate?

Need a protocol! We’ve seen lots of examples….
IP, TCP, ICMP, RIP, OSPF, BGP, DNS, HTTP, Snowcast ...

How do programs communicate?

Need a protocol! We’ve seen lots of examples….
IP, TCP, ICMP, RIP, OSPF, BGP, DNS, HTTP, Snowcast ...

Þ What do protocols require?

How to define a protocol?

How to define a protocol?

Needs to be specific enough to interoperate
 => Data representation for messages (packet formats)
 => Semantics for when to send messages
 => Error handling (when to timeout, retry, etc.)

Some common themes in all of these…

Requirements for protocols

Requirements for protocols

Data representation (headers, packet formats)
Semantics (when to send each message,

 how to handle errors)

Þ Must be specific enough to interoperate
(support multiple architectures, byte orders, languages, locales …)

When you made a custom protocol…

When you made a custom protocol…

// Guessing game example (lecture 3!!)
type struct GuessMessage {
 MessageType uint8
 Number uint16
}

func (m *GuessMessage) Marshal() []byte {
 buf := new(bytes.Buffer)
 err := binary.Write(buf, binary.BigEndian, m.MessageType)
 if err != nil {
 . . .
 }

 err = binary.Write(buf, binary.BigEndian, m.Number)
 if err != nil {
 . . .
 }
 return buf.Bytes()
}

When you made a custom protocol…

// Guessing game example (lecture 3!!)
type struct GuessMessage {
 MessageType uint8
 Number uint16
}

func (m *GuessMessage) Marshal() []byte {
 buf := new(bytes.Buffer)
 err := binary.Write(buf, binary.BigEndian, m.MessageType)
 if err != nil {
 . . .
 }

 err = binary.Write(buf, binary.BigEndian, m.Number)
 if err != nil {
 . . .
 }
 return buf.Bytes()
}

All the protocols you’ve made so far (+IP, TCP, RIP, …):
 manually packing bytes into buffers

All the protocols you’ve been writing so far: manually loading bytes
into buffers

This is useful for learning:
• How protocols work under the hood
• How fundamental Internet protocols actually work

But if your job is to build applications, is this what you should be doing?

Almost certainly not.

How SHOULD you write a protocol outside this class?

And why?

How SHOULD you write a protocol outside this class?

And why?

* At least, how to start thinking about it

Typical application goal: make an API for something

Typical application goal: make an API for something

Your App

What you have: some servers/services that live somewhere in the cloud
 => Might be distributed, might not

Want: end-user to be able to use your app
• Read some concrete object (user, product list, etc.)
• Write/upload/make changes to those objects

Client
do_thing()

Response/error

Why is this problematic?

// Guessing game example (lecture 3!!)
type struct GuessMessage {
 MessageType uint8
 Number uint16
}

func (m *GuessMessage) Marshal() []byte {
 buf := new(bytes.Buffer)
 err := binary.Write(buf, binary.BigEndian, m.MessageType)
 if err != nil {
 . . .
 }

 err = binary.Write(buf, binary.BigEndian, m.Number)
 if err != nil {
 . . .
 }
 return buf.Bytes()
}

Your App

Challenges/Requirements
• Heterogeneous devices (desktop/mobile, different OSes)
• Application will change
• Number of user devices will scale
• Number of services/services will scale too!

Client
do_thing()

Response/error

Your App

Would like to have a generic API for interacting with application services
 => Flexible to changes
 => Easy to scale
 => Works well with services that provide scaling
 (caching, load balancing, etc.)

Client
do_thing()

Response/error API

Your App

Usually, build on existing tools that can define the API for you

Client
do_thing()

Response/error API

Your App

Usually, build on existing tools that can define the API for you
 => Creates endpoints where you write code to perform actions

 => Don’t need to worry about serializing/deserializing messages

 => Build on existing protocols to handle scaling
 (eg. HTTP proxies, load balancing, caching, etc.)

Client
do_thing()

Response/error API

Concepts: endpoints

APIs via HTTP
HTTP

Endpoint
Client

App

APIs via HTTP
HTTP

Endpoint
Client

GET /student/12345/primary_cart

200 OK + {courses: [“csci 0300”, …]}

App

APIs via HTTP
HTTP

Endpoint
Client

GET /student/12345/primary_cart

200 OK + {courses: [“csci 0300”, …]}

App

• Endpoints at various URLs
• Usually: Request data with GET, upload with POST
• Client authenticates/passes inputs data with headers, cookies
• Response normally JSON, XML, or other self-describing format

Lots of frameworks to help build this!

curl -X GET 'https://www.gradescope.com/courses/567871/memberships.csv’
 -H 'User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:109.0) Gecko/20100101

Firefox/118.0’
 -H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8'

-H 'Accept-Language: en-US,en;q=0.5’
 -H 'Accept-Encoding: gzip, deflate, br’
 -H 'Referer: https://www.gradescope.com/courses/567871/memberships’
 -H 'DNT: 1’
 -H 'Connection: keep-alive’
 -H 'Cookie: remember_me=XXXXXXXXXXXXXXXX; __stripe_mid=XXXXXXXXXXXXX;

signed_token=XXXXXXXXXXXXXXX; _gradescope_session=XXXXXX[. . .]XXXXXXXX; __stripe_sid=XXXXXXXXXXX’
 -H 'Upgrade-Insecure-Requests: 1’
 -H 'Sec-Fetch-Dest: document’
 -H 'Sec-Fetch-Mode: navigate’
 -H 'Sec-Fetch-Site: same-origin’
 -H 'Sec-Fetch-User: ?1'

Request
curl –X GET -H "Accept: application/vnd.github+json" \
 -H "Authorization: Bearer <API-TOKEN>" \
 -H "X-GitHub-Api-Version: 2022-11-28" \
 https://api.github.com/orgs/octocat/repos

Response
[
 {
 "id": 1296269,
 "node_id": "MDEwOlJlcG9zaXRvcnkxMjk2MjY5",
 "name": "Hello-World",
 "full_name": "octocat/Hello-World",
 "owner": {
 "login": "octocat",
 "id": 1,
 "avatar_url": "https://github.com/images/error/octocat_happy.gif",
 "html_url": "https://github.com/octocat",
 "type": "User",
 "site_admin": false
 },
 "private": false,
 "html_url": "https://github.com/octocat/Hello-World",
 "description": "This your first repo!",
 "fork": false,
 "url": "https://api.github.com/repos/octocat/Hello-World",
 "git_url": "git:github.com/octocat/Hello-World.git”,
 . . .
 },

REST (REpresentational State Transfer): an architectural style

Some key properties
 - Server can be stateless when client “at rest”
 - Responses indicate how they can be cached
 - Backend abstracted from client (doesn’t know if talking to server, cache, etc.)
 - Unform interface: resources identified by URLs, responses identified by other URLs

Why is this useful?

Why is this useful?

• HTTP is ubiquitous
• Lots of existing tools to scale HTTP
– Headers/cookies/etc for authentication
– Caching/procies/load balancers

Why use JSON/etc vs. a binary encoding?

HTTP Example
> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Thu, 24 Mar 2011 12:58:46 GMT
Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT
ETag: "840a88b-236c-49f3992853bc0"
Accept-Ranges: bytes
Content-Length: 9068
Vary: Accept-Encoding
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en”>
...

What if you need more flexibility?

Generic view: Remote Procedure Call (RPC)

• Procedure calls are a well understood mechanism
– Transfer control and data on a single computer

• Idea: make distributed programming look the same
– Have servers export interfaces that are accessible through local APIs
– Perform the illusion behind the scenes

• 2 Major Components
– Protocol to manage messages sent between client and server
– Language and compiler support

• Packing, unpacking, calling function, returning value

Stub Functions

• Local stub functions at client and server give appearance of a local function call
• client stub

– marshalls parameters -> sends to server -> waits
– unmarshalls results -> returns to client

• server stub
– creates socket/ports and accepts connections
– receives message from client stub -> unmarshalls parameters -> calls server function
– marshalls results -> sends results to client stub

406 5 End-to-End Protocols

! The network between the calling process and the called process has much

more complex properties than the backplane of a computer. For example, it is

likely to limit message sizes and has a tendency to lose and reorder messages.

! The computers on which the calling and called processes run may have sig-

nificantly different architectures and data representation formats.

Thus, a complete RPC mechanism actually involves two major components:

1 A protocol that manages the messages sent between the client and the server pro-

cesses and that deals with the potentially undesirable properties of the underlying

network

2 Programming language and compiler support to package the arguments into a

request message on the client machine and then to translate this message back

into the arguments on the server machine, and likewise with the return value

(this piece of the RPC mechanism is usually called a stub compiler)

Figure 5.12 schematically depicts what happens when a client invokes a remote

procedure. First, the client calls a local stub for the procedure, passing it the arguments

required by the procedure. This stub hides the fact that the procedure is remote by

Caller
(client)

Client
stub

RPC
protocol

Return
value

Arguments

ReplyRequest

Callee
(server)

Server
stub

RPC
protocol

Return
value

Arguments

ReplyRequest

Figure 5.12 Complete RPC mechanism.

Some examples

• gRPC
• Apache Thrift
• JSON-RPC
• XML-RPC, SOAP
• . . .

Design questions

Describing data

Example: gRPC

service HelloService {
 rpc SayHello (HelloRequest)
 returns (HelloResponse);
}

message HelloRequest {
 string greeting = 1;
}
message HelloResponse {
 string reply = 1;
}

Example: gRPC

• IDL-based, defined by Google
– Protocol Buffers as IDL

• User specifies services, calls
– Single and streaming calls
– Support for timeouts,

cancellations, etc

• Transport: based on HTTP/2

service HelloService {
 rpc SayHello (HelloRequest)
 returns (HelloResponse);
}

message HelloRequest {
 string greeting = 1;
}
message HelloResponse {
 string reply = 1;
}

gRPC

• Generates stubs in many languages
– C/C++, C#, Node.js, PHP, Ruby, Python, Go, Java
– These are interoperable

• Transport is http/2

Protocol Buffers

• Defined by Google, released to the public
– Widely used internally and externally
– Supports common types, service definitions
– Natively generates C++/Java/Python/Go code

• Over 20 other supported by third parties

– Efficient binary encoding, readable text encoding

• Performance
– 3 to 10 times smaller than XML
– 20 to 100 times faster to process

Protocol Buffers Example (for a file)
message Student {
 required String name = 1;
 required int32 credits = 2;
}

students.txt

Writer

Protocol Buffers Example (for a file)
message Student {
 required String name = 1;
 required int32 credits = 2;
}

Student s;
s.set_name(“Jane”);
s.set_credits(20);
fstream output(“students.txt” , ios:out | ios:binary);
s.SerializeToOstream(&output);

students.txt

Writer

Protocol Buffers Example (for a file)
message Student {
 required String name = 1;
 required int32 credits = 2;
}

Student s;
s.set_name(“Jane”);
s.set_credits(20);
fstream output(“students.txt” , ios:out | ios:binary);
s.SerializeToOstream(&output);

Student s;
fstream input(“students.txt” , ios:in | ios:binary

);
s.ParseFromIstream();

Reader

students.txt

Writer

HTTP serverClient

Request: GET /thing

Response: 200 OK + thing

HTTP serverClient

Request: GET /thing

Response: 200 OK + thing

HTTP serverClient

Request: GET /thing

Response: 200 OK + thing

ÞGeneric way to ask the server to do something => an API over the network!

HTTP request: a way to fetch (GET) or send (POST) some object
• Doesn’t need to be a web page
• Doesn’t need to be from a browser

protobuf: Binary Encoding

• Variable-length integers
– 7 bits out of 8 to encode integers
– Msb: more bits to come
– Multi-byte integers: least significant group first

• Signed integers: zig-zag encoding, then varint
– 0:0, -1:1, 1:2, -2:3, 2:4, …
– Advantage: smaller when encoded with varint

• General:
– Field number, field type (tag), value

• Strings:
– Varint length, unicode representation

Apache Thrift

• Originally developed by Facebook
• Used heavily internally
• Supports (at least): C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa,

Smalltalk, and Ocaml
• Types: basic types, list, set, map, exceptions
• Versioning support
• Many encodings (protocols) supported

– Efficient binary, json encodings

Conclusions

• Unless you really want to optimize your protocol for performance, use an IDL

• Parsing code is easy to get (slightly) wrong, hard to make fast—only want to do
this once!

• Which one should you use?

Which data types?

• Basic types
– Integers, floating point, characters
– Some issues: endianness (ntohs, htons), character encoding, IEEE 754

• Flat types
– Strings, structures, arrays
– Some issues: packing of structures, order, variable length

• Complex types
– Pointers! Must flatten, or serialize data structures

538 7 End-to-End Data

At the next level are flat types—structures and arrays. While flat types might

at first not appear to complicate argument marshalling, the reality is that they do.

The problem is that the compilers used to compile application programs sometimes

insert padding between the fields that make up the structure so as to align these fields

on word boundaries. The marshalling system typically packs structures so that they

contain no padding.

At the highest level, the marshalling system might have to deal with complex

types—those types that are built using pointers. That is, the data structure that one

program wants to send to another might not be contained in a single structure, but

might instead involve pointers from one structure to another. A tree is a good ex-

ample of a complex type that involves pointers. Clearly, the data encoder must pre-

pare the data structure for transmission over the network because pointers are imple-

mented by memory addresses, and just because a structure lives at a certain memory

address on one machine does not mean it will live at the same address on another

machine. In other words, the marshalling system must serialize (flatten) complex data

structures.

! In summary, depending on how complicated the type system is, the task of argu-

ment marshalling usually involves converting the base types, packing the structures,

and linearizing the complex data structures, all to form a contiguous message that can

be transmitted over the network. Figure 7.3 illustrates this task.

Conversion Strategy

Once the type system is established, the next issue is what conversion strategy the

argument marshaller will use. There are two general options: canonical intermediate

form and receiver-makes-right. We consider each, in turn.

Argument marshaller

Application data structure

Figure 7.3 Argument marshalling: converting, packing, and linearizing.

Problem

• Two programs want to communicate: must define the protocol
– We have seen many of these, across all layers
– E.g., Snowcast packet formats, protocol headers

• Key Problems
– Semantics of the communication

• APIs, how to cope with failure

– Data Representation
– Scope: should the scheme work across

• Architectures
• Languages
• Compilers…?

Data Schema

• How to parse the encoded data?
• Two Extremes:

– Self-describing data: tags
• Additional information added to message to help in decoding
• Examples: field name, type, length

– Implicit: the code at both ends “knows” how to decode the message
• E.g., your Snowcast implementation
• Interoperability depends on well defined protocol specification!
• very difficult to change

Presentation Formatting

• How to represent data?
• Several questions:

– Which data types do you want to support?
• Base types, Flat types, Complex types

– How to encode data into the wire
– How to decode the data?

• Self-describing (tags, type-length-value)
• Implicit description (the ends know)

• Several answers:
– Many frameworks do these things automatically

Stub Generation

• 2 Main ideas:
• Introspection-based

– E.g., Java RMI

• Independent specification: IDL
– IDL – Interface Description Language

• describes an interface in a language neutral way

– Separates logical description of data from
• Dispatching code
• Marshalling/unmarshalling code
• Data wire format

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser DNS

example.com?

GET /page.html

200 OK + (Content of page.html)

Server returns response (in this case, with HTML)

Welcome!

