CSCI-1680
APls

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

TCP ofticially due tomorrow (Friday, Nov 22)
— Lots of office hours in the meantime, | will add some more
— Monday 11/25: one day late

— Like with IP: you can continue to make small bugfixes after the deadline
« OK: Fixing small bugs, README, capture files, code cleanup

* Not OK: eg. implementing sendfile/recvfile, teardown, submitting
untested code

— Grading meetings: after break

What's a protocol?

Warmup: How do you define a protocol?
Describe it to someone who hasn’t taken 1680.

Warmup: What's a protocol?

Describe it to someone who hasn’t taken 1680.

How do programs communicate?

Need a protocoll We've seen lots of examples....
IP, TCP, ICMP, RIP, OSPF, BGP, DNS, HTTP, Snowcast ...

How do programs communicate?

Need a protocoll We've seen lots of examples....
IP, TCP, ICMP, RIP, OSPF, BGP, DNS, HTTP, Snowcast ...

[= What do protocols require?

How to define a protocol?

0 4 8 16
Version] THL | 705 | Tomiiength |
" identification _[Fiess| Frgmentoffser |

0 31

Sequence Number

nowledgement Number

From: draft-ietf-tcpm-rfc793bis-28 Internet Standard

Internet Engineering Task Force (IETF) W. Eddy, Ed.
STD: 7 MTI Systems
Request for Comments: 9293 August 2022
Obsoletes: 793, 879, 2873, 6093, 6429, 6528,

6691
Updates: 1011, 1122, 5961
Category: Standards Track
ISSN: 2070-1721

Transmission Control Protocol (TCP)

Abstract

Data RIS
Oliamy | Reserved BIEIEENIE windowsie

This document specifies the Transmission Control Protocol (TCP). TCP

is an important transport-layer protocol in the Internet protocol

stack, and it has continuously evolved over decades of use and growth
" X :

How to define a protocol?

0 4 8 16
Version] THL | 705 | Tomiiength |
" identification _[Fiess| Frgmentoffser |

0 31

Sequence Number

Acknowledgement Number

Data RIS
Oliamy | Reserved BIEIEENIE windowsie

Needs to be specific enough to interoperate

=> Data representation for messages (packet formats)
=> Semantics for when to send messages

=> Error handling (when to timeout, retry, etc.)

Some common themes in all of these...

From: draft-ietf-tcpm-rfc793bis-28 Internet Standard

Internet Engineering Task Force (IETF) W. Eddy, Ed.
STD: 7 MTI Systems
Request for Comments: 9293 August 2022
Obsoletes: 793, 879, 2873, 6093, 6429, 6528,

6691
Updates: 1011, 1122, 5961
Category: Standards Track
ISSN: 2070-1721

Transmission Control Protocol (TCP)

Abstract

This document specifies the Transmission Control Protocol (TCP). TCP
is an important transport-layer protocol in the Internet protocol
stack, and it has continuously evolved over decades of use and growth
0 he Interpe Qve hi ime, g number o hanges have been made

Requirements for protocols

0 4 8 16
Version] TAL | Tos | Towiiength |
" dentfication _[risgs| Frgmentoftsst |

ption
0 15 16 31

Sequence Number

Acknowledgement Number 20 Bytes
Data RIS
Giiea| Peservea [BEEETE windowsize |

Requirements for protocols

. Semantics (when to send each message,
Data representation (headers, packet formats) how to handle errors)

16

0 4 8
Version] THL | 705 | Totallength | . .

From: draft-ietf-tcpm-rfc793bis-28 Internet Standard
[tdentification ___[Fiags] __ Fromentoffset |
Internet Engineering Task Force (IETF) W. Eddy, Ed.

STD: 7 MTI Systems
RERest 6T CORSHESE 9293 AUGUES 2622
Obsoletes: 793, 879, 2873, 6093, 6429, 6528,

6691

Updates: 1011, 1122, 5961

Category: Standards Track

ISSN: 2070-1721

Transmission Control Protocol (TCP)

Acknowledgement Number Abstract

R|S
(I))f?stgt Eagﬂm This document specifies the Transmission Control Protocol (TCP). TCP

is an important transport-layer protocol in the Internet protocol
Checksum Urgent Pointer stack, and it has continuously evolved over decades of use and growth

= Must be specific enough to interoperate
(support multiple architectures, byte orders, languages, locales ...)

When you made a custom protocol...

Client to Server Commands

The client sends the server messages called commands. There are two commands the
client can send the server, in the following format:

Hello:
uint8 commandType = 0
uintl1l6 udpPort;

SetStation:
uint8 commandType = 1;
uintl6é stationNumber

A uint8 is an unsigned 8-bit integer; a uint16 is an unsigned 16-bit integer. Your
programs MUST use network byte order. So, to send a Hello command, your client would
send exactly three bytes to the server: one for the command type and two for the port.

When you made a custom protocol...

Client to Server Commands

The client sends the server messages called commands. There are two commands the
client can send the server, in the following format:

// Guessing game example (lecture 3!!)
Hello
uint8 commandType = 0 type struct GuessMessage {
uint16 udpPort MessageType uint8

SetStation Number uintle

uint8 commandType = 1 }
uintl6 stationNumber

func (m *GuessMessage) Marshal() []byte {
buf := new(bytes.Buffer)

A uint8 is an unsigned 8-bit integer; a uint16 is an

programs MUST use network byte order. So, to send

send exactly three bytes to the server: one for the co err <= binar'y.Wr‘ite(buf, binar‘Y-BigEndian: m-MessageType)
if err = nil {
}
err = binary.Write(buf, binary.BigEndian, m.Number)
if err = nil {
}

return buf.Bytes()

When you made a custom protocol...

Client to Server Commands

The client sends the server messages called commands. There are two commands the
client can send the server, in the following format:

// Guessing game example (lecture 3!!)
Hello
uint8 commandType = 0 type struct GuessMessage {
uint16 udpPort MessageType uint8

SetStation Number uintle

uint8 commandType = 1 }
uintl6 stationNumber

func (m *GuessMessage) Marshal() []byte {
buf := new(bytes.Buffer)

A uint8 is an unsigned 8-bit integer; a uint16 is an

programs MUST use network byte order. So, to send

send exactly three bytes to the server: one for the co err <= binar'y.Wr‘ite(buf, binar‘Y-BigEndian: m-MessageType)
if err = nil {
}
err = binary.Write(buf, binary.BigEndian, m.Number)
if err = nil {
1

All the protocols you've made so far (+IP, TCP, RIP, ...):
manually packing bytes into buffers

All the protocols you've been writing so far: manually loading bytes
into buffers

This is useful for learning:
* How protocols work under the hood
« How fundamental Internet protocols actually work

But if your job is to build applications, is this what you should be doing?

Almost certainly not.

How SHOULD you write a protocol outside this class?

And why?

How SHOULD you write a protocol outside this class?

And why?

* At least, how to start thinking about it

Typical application goal: make an APl for something

Typical application goal: make an APl for something

What you have: some servers/services that live somewhere in the cloud
=> Might be distributed, might not

Want: end-user to be able to use your app
* Read some concrete object (user, product list, etc.)
» Write/upload/make changes to those objects

do_thing()

Response/error

Why is this problematic?

Client to Server Commands

The client sends the server messages called commands. There are two commands the
client can send the server, in the following format:

// Guessing game example (lecture 3!!)
Hello
uint8 commandType = 0 type struct GuessMessage {
uint16 udpPort MessageType uint8

SetStation Number uintle

uint8 commandType = 1 }
uintl6 stationNumber

func (m *GuessMessage) Marshal() []byte {
buf := new(bytes.Buffer)

A uint8 is an unsigned 8-bit integer; a uint16 is an

programs MUST use network byte order. So, to send

send exactly three bytes to the server: one for the co err <= binar'y.Wr‘ite(buf, binar‘Y-BigEndian: m-MessageType)
if err = nil {
}
err = binary.Write(buf, binary.BigEndian, m.Number)
if err = nil {
}

return buf.Bytes()

do_thing()

Response/error

Challenges/Requirements

« Heterogeneous devices (desktop/mobile, different OSes)
 Application will change

« Number of user devices will scale

« Number of services/services will scale too!

do_thing()

Response/error

Would like to have a generic API for interacting with application services
=> Flexible to changes
=> Easy to scale
=> Works well with services that provide scaling
(caching, load balancing, etc.)

do_thing()

Response/error

Usually, build on existing tools that can define the API for you

do_thing()

Response/error

Usually, build on existing tools that can define the API for you
=> Creates endpoints where you write code to perform actions

=> Don't need to worry about serializing/deserializing messages

=> Build on existing protocols to handle scaling
(eg. HTTP proxies, load balancing, caching, etc.)

Concepts: endpoints

APls via HTTP

App
>

APls via HTTP

oo

GET /student/12345/primary cart

200 OK + {courses: [“csci 03007, ..]}

APls via HTTP

oo

GET /student/12345/primary cart

200 OK + {courses: [“csci 03007, ..]}

Endpoints at various URLs

Usually: Request data with GET, upload with POST

Client authenticates/passes inputs data with headers, cookies
Response normally JSON, XML, or other self-describing format

[Lots of frameworks to help build this! }

curl -X GET 'https://www.gradescope.com/courses/567871/memberships.csv’

-H 'User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.15; rv:109.0) Gecko/20100101
Firefox/118.0°

-H '"Accept: text/html,application/xhtml+xml,application/xml;q=0.9,1image/avif,image/webp,*/*;q=0.8"
-H 'Accept-Language: en-US,en;qg=0.5"

-H '"Accept-Encoding: gzip, deflate, br’

-H 'Referer: https://www.gradescope.com/courses/567871/memberships’

-H 'DNT: 1°

-H 'Connection: keep-alive’

-H 'Cookie: remember_ me=XXXXXXXXXXXXXXXX; _ stripe_mid=XXXXXXXXXXXXX;
signed token=XXXXXXXXXXXXXXX; _gradescope session=XXXXXX[. . .]IXXXXXXXX; _ stripe_sid=XXXXXXXXXXX’

-H 'Upgrade-Insecure-Requests: 1’
-H 'Sec-Fetch-Dest: document’

-H 'Sec-Fetch-Mode: navigate’

-H 'Sec-Fetch-Site: same-origin’
-H 'Sec-Fetch-User: ?1'

O GitHub Docs Version: Free, Pro, & Team ~ Search GitHub Docs

= REST API |/ Repositories /| Repositories

Code samples for "List organization repositories"

Path parameters
Request example

org string Required

The organization name. The name is not case sensitive. (3 /orgs/{org}/repos

cURL JavaScript GitHub CLI
Query parameters
curl -L \
-H "Accept: application/vnd.github+json" \
type string -H "Authorization: Bearer <YOUR-TOKEN>" \
. L -H "X-GitHub-Api-Version: 2022-11-28" \
Specifies the types of repositories you want returned. https://api.github.com/orgs/ORG/ repos

Default: all

Can be one of: all, public, private, forks, sources, member

Response
sort siring

The property to sort the results by. Example response Response schema

Default: created
Status: 200

Can be one of: created , updated, pushed, full_name

direction string "id": 1296269,
"node_id": "MDEwO1J1cG9zaXRvcnkxMjk2MjY5",
"name": "Hello-World",
Can be one of: asc, desc "full_name": "octocat/Hello-World",
"owner": {
"login": "octocat",

per_page integer "id": 1,

Unada id. ITMDNNAVIVAIT ~5 E=I!

The order to sort by. Default: asc when using full_name , otherwise desc .

The number of results per page (max 100). For more information, see "Using

Request

curl -X GET -H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer <API-TOKEN>" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/orgs/octocat/repos

Response
[
{
"id": 1296269,
"node_id": "MDEw01lJ1cG9zaXRvcnkxMjk2MjY5",

"name": "Hello-World",
"full name": "octocat/Hello-World",
"owner": {

"login": "octocat",

"id": 1,

"avatar_url": "https://github.com/images/error/octocat_happy.gif",

"html_url": "https://github.com/octocat”,

"type": "User",

"site_admin": false

})

"private": false,
"html_url”: "https://github.com/octocat/Hello-World",
"description”: "This your first repo!",
"fork": false,
"url": "https://api.github.com/repos/octocat/Hello-World",
"git url": "git:github.com/octocat/Hello-World.git”,

}s

REST (REpresentational State Transfer): an architectural style

Some key properties

- Server can be stateless when client “at rest”

- Responses indicate how they can be cached

- Backend abstracted from client (doesn’t know if talking to server, cache, etc.)

- Unform interface: resources identified by URLs, responses identified by other URLs

Why is this useful?

Why is this useful?

« HTTP is ubiquitous

* Lots of existing tools to scale HTTP
— Headers/cookies/etc for authentication
— Caching/procies/load balancers

Why use JSON/etc vs. a binary encoding?

HTTP Example

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character is '"]'.

GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 24 Mar 2011 12:58:46 GMT

Server: Apache/2.2.9 (Debian) mod ssl1/2.2.9 OpenSSL/0.9.8¢g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT

ETag: "840a88b-236c-49f3992853bcO"

Accept-Ranges: bytes

Content-Length: 9068

Vary: Accept-Encoding

Connection: close

Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en”>

What if you need more flexibility?

Generic view: Remote Procedure Call (RPC)

e Procedure calls are a well understood mechanism
— Transfer control and data on a single computer

* |dea: make distributed programming look the same
— Have servers export interfaces that are accessible through local APlIs
— Perform the illusion behind the scenes

* 2 Major Components

— Protocol to manage messages sent between client and server

— Language and compiler support
* Packing, unpacking, calling function, returning value

Stub Functions

* Local stub functions at client and server give appearance of a local function call

* client stub
— marshalls parameters -> sends to server -> waits
— unmarshalls results -> returns to client

e server stub
— creates socket/ports and accepts connections

— receives message from client stub -> unmarshalls parameters -> calls server function
— marshalls results -> sends results to client stub

Caller
(client)

Return
Arguments | ctu
value

Client
stub

Request | Reply

RPC
protocol

Callee

(server)

Return
Arguments |
value

Server
stub

Request I Reply

RPC
protocol

gRPC

Apache Thrift
JSON-RPC
XML-RPC, SOAP

Some examples

Design questions

Describing data

Example: gRPC

service HelloService {
rpc SayHello (HelloRequest)
returns (HelloResponse);

}

message HelloRequest {
string greeting = 1;

X

message HelloResponse {
string reply = 1;

X

Example: gRPC

 |DL-based, defined by Google

— Protocol Buffers as IDL

* User specifies services, calls

— Single and streaming calls

— Support for timeouts,
cancellations, etc

 Transport: based on HTTP/2

service HelloService {
rpc SayHello (HelloRequest)
returns (HelloResponse);

}

message HelloRequest {
string greeting = 1;

X

message HelloResponse {
string reply = 1;

X

gRPC

« Generates stubs in many languages
— C/C++, C#, Node.js, PHP, Ruby, Python, Go, Java
— These are interoperable

 Transport is http/2

Protocol Buffers

» Defined by Google, released to the public
— Widely used internally and externally
— Supports common types, service definitions

— Natively generates C++/Java/Python/Go code
* Over 20 other supported by third parties

— Efficient binary encoding, readable text encoding
* Performance

— 3 to 10 times smaller than XML

— 20 to 100 times faster to process

message Student {

Protocol Bufters Example (for a file) required String name = 1;

required int32 credits = 2;

}

e
e

students.txt

message Student {

Protocol Bufters Example (for a file) required String name = 1;

required int32 credits = 2;

Student s;

s.set_name(“Jane”);

s.set _credits(20);

fstream output(“students.txt” , ios:out | ios:binary);

s.SerializeToOstream(&output);

e
e

students.txt

message Student {

Protocol Bufters Example (for a file) required String name = 1;

students.txt

required int32 credits = 2;

Student s;

s.set_name(“Jane”);

s.set _credits(20);

fstream output(“students.txt” , ios:out | ios:binary);
s.SerializeToOstream(&output);

Student s;
fstream input(“students.txt” , ios:in ios:binary

)5

s.ParseFromIstream();

Request: GET /thing

Response: 200 OK + thing

Request: GET /thing

Response: 200 OK + thing

Request: GET /thing

Response: 200 OK + thing

HTTP request: a way to fetch (GET) or send (POST) some object
* Doesn't need to be a web page
 Doesn't need to be from a browser

[:> Generic way to ask the server to do something => an APl over the network! }

protobuf: Binary Encoding

Variable-length integers

— 7 bits out of 8 to encode integers

— Msb: more bits to come

— Multi-byte integers: least significant group first
Signed integers: zig-zag encoding, then varint

— 0:0, -1:1, 1:2, -2:3, 2:4, ...

— Advantage: smaller when encoded with varint
General:

— Field number, field type (tag), value

Strings:

— Varint length, unicode representation

Apache Thrift

Originally developed by Facebook
Used heavily internally

Supports (at least): C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa,
Smalltalk, and Ocaml

Types: basic types, list, set, map, exceptions
Versioning support

Many encodings (protocols) supported
— Efficient binary, json encodings

Conclusions

* Unless you really want to optimize your protocol for performance, use an IDL

 Parsing code is easy to get (slightly) wrong, hard to make fast—only want to do
this once!

* Which one should you use?

Which data types?

* Basic types

— Integers, floating point, characters

— Some issues: endianness (ntohs, htons), character encoding, IEEE 754
 Flat types

— Strings, structures, arrays

— Some issues: packing of structures, order, variable length
« Complex types

— Pointers! Must flatten, or serialize data structures

Argument marshaller

Problem

+ Two programs want to communicate: must define the protocol
— We have seen many of these, across all layers
— E.g., Snowcast packet formats, protocol headers

e Key Problems

— Semantics of the communication
* APIs, how to cope with failure

— Data Representation

— Scope: should the scheme work across
* Architectures
* Languages
« Compilers...?

Data Schema

* How to parse the encoded data?

* Two Extremes:
— Self-describing data: tags

« Additional information added to message to help in decoding
« Examples: field name, type, length
— Implicit: the code at both ends “knows” how to decode the message
+ E.g., your Snowcast implementation
* Interoperability depends on well defined protocol specification!
« very difficult to change

Presentation Formatting

* How to represent data?

 Several questions:
— Which data types do you want to support?
* Base types, Flat types, Complex types
— How to encode data into the wire
— How to decode the data?
« Self-describing (tags, type-length-value)
* Implicit description (the ends know)

e Several answers:
— Many frameworks do these things automatically

Stub Generation

* 2 Main ideas:
* Introspection-based
— E.g., Java RMI

* Independent specification: IDL
— IDL - Interface Description Language
« describes an interface in a language neutral way
— Separates logical description of data from
* Dispatching code
» Marshalling/unmarshalling code
« Data wire format

W o

New Tab

C

Welcome!

example.com?

>

GET /page.html

200 OK + (Content of page.html)

X+

Q_ http://example.com/page.html

page.html
<html>

<title>hi</title>
<hl>Welcome!</h1>
</html>

Server returns response (in this case, with HTML)

