
CSCI-1680
TLS

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti
1

Administrivia

• Thanksgiving break!
– No hours/Ed support Wed-Fri

• TCP grading: after break, signups on Mon, Dec 2
– You can work on your readme, fix small bugs before meeting without using late

days

2

Administrivia

TCP was due Friday, Nov 22
– Like with IP: you can continue to make small bugfixes after the deadline

• OK: Fixing small bugs, README, capture files, code cleanup

• Not OK: eg. implementing sendfile/recvfile, teardown, submitting
untested code

– Grading meetings: after break

After break: HW5, small SRC component, final project

Administrivia

TCP was due Friday, Nov 22
– Like with IP: you can continue to make small bugfixes after the deadline

• OK: Fixing small bugs, README, capture files, code cleanup

• Not OK: eg. implementing sendfile/recvfile, teardown, submitting
untested code

– Grading meetings: after break

The final project

Out after break, handout online after class
…maybe skim it before break?

The final project

Out after break, handout online after class
…maybe skim it before break?

What it is
• Open-ended: build something new related to class topics
• List of ideas in document… or propose your own!

Project examples

• Make your own iterative DNS resolver

• Make your own web API / responsive website

• Implement something (eg. Snowcast), etc. using RPCs (more next
week)

• Build your own traffic analyzer

• Extend your IP/TCP in some way…

Project examples

• Make your own iterative DNS resolver

• Make your own web API / responsive website

• Implement something (eg. Snowcast), etc. using RPCs (more next
week)

• Build your own traffic analyzer

• Extend your IP/TCP in some way…

These are only a few ideas!

Final project Logistics

Out after break, document online after class
…maybe skim it before break?

Deadlines
– Team assignment form: Due Monday, 12/2
• Keep your current groups, or form new ones, or work solo

– Project proposal: Due Friday, 12/6
– Final submission: Due Thursday, 12/16

10

func VWrite(toSend) {
 snd.add(toSend)

}

func SendThread() {
 for {

 if canSend() && snd.hasBytes() {
 doSend()
 }
 }
}

Version 1

11

func VWrite(toSend) {
 snd.add(toSend)

}

func SendThread() {
 for {

 if canSend() && snd.hasBytes() {
 doSend()
 }
 }
}

func VWrite(toSend) {
 snd.add(toSend)
 sendChan <- true
}

func SendThread() {
 for {
 <- sendChan
 if canSend() && snd.hasBytes() {
 doSend()
 }
 }
}

Version 1

12

func VWrite(toSend) {
 snd.add(toSend)

}

func SendThread() {
 for {

 if canSend() && snd.hasBytes() {
 doSend()
 }
 }
}

func VWrite(toSend) {
 snd.add(toSend)
 sendChan <- true
}

func SendThread() {
 for {
 <- sendChan
 if canSend() && snd.hasBytes() {
 doSend()
 }
 }
}

Version 1 Version 2: signal channel when writing

Warmup: what’s the functional difference between these?
(And why did we prefer version 2?)

13

func VWrite(toSend) {
 snd.add(toSend)
 sendChan <- true
}

func SendThread() {
 for {
 <- sendChan
 if canSend() && snd.hasBytes() {
 doSend()
 }
 }
}

The good

14

func VWrite(toSend) {
 snd.add(toSend)
 sendChan <- true
}

func SendThread() {
 for {
 <- sendChan
 if canSend() && snd.hasBytes() {
 doSend()
 }
 }
}

The bad

15

func VWrite(toSend) {
 snd.add(toSend)
 sendChan <- true
}

func SendThread() {
 for {
 <- sendChan
 if canSend() && snd.hasBytes() {
 doSend()
 }
 }
}

”I thought using threads was good?!” 😱

Up to the kernel to decide how to schedule
threads

How long before next thread wakes up????

 => Depends on how long the kernel takes
to get around to it!

16

vs.

Modern enterprise network cards
40-100+ Gbps

Linux kernel

Lot of ongoing work in this area

• Work to improve kernel performance

• Kernel bypass: circumvent kernel entirely

• Help from hardware: offload things like checksum, batching of segments, even
more…

I am absolutely not an expert on this…

17

Example: kernel bypass

18

Example: help from hardware

19

IPoAC

How can we improve the physical layer?

Traditional links have fixed bandwidth
• Media limits what frequencies can be used for signal
• Places upper bound on channel capacity

What if we weren’t constrained by the EM spectrum?

How else can we transmit data?

RFC1149: IPoAC

IP over Avian Carriers (1 April 1990)
• High delay, low throughput, low

altitude datagram service
• Nearly unlimited movement in 3D

etherspace
• Intrinsic collision avoidance
• Typical MTU: 256 milligrams

IPoAC: Design

IPoAC: Implementation

Proof of concept: 28 April 2001
Bergen, Norway
https://web.archive.org/web/20140215072548/http://www.blug.linux.no/rfc1149/

https://web.archive.org/web/20140215072548/http:/www.blug.linux.no/rfc1149/

IPoAC in practice

$ ping -c 9 -i 900 10.0.3.1
PING 10.0.3.1 (10.0.3.1): 56 data bytes
64 bytes from 10.0.3.1: icmp_seq=0 ttl=255 time=6165731.1 ms
64 bytes from 10.0.3.1: icmp_seq=4 ttl=255 time=3211900.8 ms
64 bytes from 10.0.3.1: icmp_seq=2 ttl=255 time=5124922.8 ms
64 bytes from 10.0.3.1: icmp_seq=1 ttl=255 time=6388671.9 ms

--- 10.0.3.1 ping statistics ---
9 packets transmitted, 4 packets received, 55% packet loss round-trip
min/avg/max = 3211900.8/5222806.6/6388671.9 ms

IPoAC: (more) Modern implementations

Today: microSD card: ~250mg, 1TB

+ = ???

But actually

What happens if you have a LOT of data to move into the cloud?

But actually

What happens if you have a LOT of data to move into the cloud?
Example: AWS

RFC791: IPv4 Header

IP over Burrito Carriers

April Fool’s Day RFCs

https://en.wikipedia.org/wiki/April_Fools%27_Day_Request_for_Comments Enjoy!

https://en.wikipedia.org/wiki/April_Fools%27_Day_Request_for_Comments

36

37

This is not a security class
(as much as I would like it to be…)

• This isn’t intended to be a lecture on all crypto

• I want you to appreciate the important principles, understand what’s important for
TLS (and other protocols like it)

Want to know more?

38

This is not a security class
(as much as I would like it to be…)

• This isn’t intended to be a lecture on all crypto

• I want you to appreciate the important principles, understand what’s important for
TLS (and other protocols like it)

Want to know more?
• CS1660 (Spring): Intro to Computer Systems Security
• CS1515 (Spring): Applied cryptography
• CS1510 (Fall): Intro to Cryptography and Computer Security

39

Internet’s Design: Insecure

• Designed for simplicity in a naïve era
• Lots of insecure systems that can be compromised

• No central administration => hard to diagnose, coordinate fixes

40

You
yourbank.com

What can go wrong?

Attacker

41

(some) Key security properties

• Confidentiality

• Authentication

• Integrity

42

(some) Key security properties

• Confidentiality: prevent adversary from reading the data
=> Protect against eavesdropping, sniffing

• Authentication: verifying the identity of a message or actor
 => Protect against spoofing, impersonation

• Integrity: make sure messages arrive in original form
=> Protect against tampering

43

(some) Key security properties

• Confidentiality: prevent adversary from reading the data
=> Protect against eavesdropping, sniffing

• Authentication: verifying the identity of a message or actor
 => Protect against spoofing, impersonation

• Integrity: make sure messages arrive in original form
=> Protect against tampering

There are more security properties, but we’ll stick to these => Focus of TLS

44

Other important security properties

• Availability: Will the network deliver data?
– Protect against infrastructure compromise, DDoS

• Provenance: Who is responsible for this data?
– Prevent forging responses, denying responsibility; prove who created the data

• Authorization: is actor allowed to do this action?
• Appropriate use: is action consistent with policy? (spam, copyright, …)
• Anonymity: can someone tell what packets I am sending?

45

TLS: Transport layer security

TLS 1.0 (1999) => TLS 1.3 (2018)
Bidirectional pipe between two parties providing:

– Confidentiality
– Integrity
– Authentication

46

TLS: Transport layer security
Bidirectional pipe between two parties providing:

– Confidentiality
– Integrity
– Authentication

Are these all the security properties we might want? No!

You yourbank.com

47

Where does TLS go?

Network

Link

Physical

Transport

Application

Service: move bits to other node across link

Move data across individual links

Moving data between hosts (nodes)

How to support multiple applications?

Service: user-facing application.
Application-defined messages

48

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Application Protocol

Transport Protocol

Network Protocol

Link-Layer Protocol

Throwback: The OSI model

49

50

Fundamental crypto properties we need

51

Symmetric cryptography

• A, B share secret key k
• Examples: AES, Serpent, Whirlpool, DES (old, insecure), …
• Provides: confidentiality (encrypt/decrypt), integrity (MAC)

Symmetric crypto: strong, fast, but parties need to have shared key k
=> Key distribution is hard, why?

52

Confidentiality: Symmetric encryption

Internet
Encrypt with
secret key

Decrypt with
secret key

Plaintext Plaintext

Ciphertext

53

Confidentiality: Asymmetric encryption

Everyone has two keys: k_pub, k_priv

54

Confidentiality: Asymmetric encryption

• Everyone has two keys: k_pub, k_priv
– k_pub: Public key, widely-known
– k_priv: Private key, kept secret

• Used for: authentication, signing (and confidentiality, integrity)

55

Public Key / Asymmetric Encryption

• Sender uses receiver’s public key
– Advertised to everyone

• Receiver uses complementary private key
– Must be kept secret

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

56

What can we do with this?

57

Public Key Authentication

• Each side need only to know the other side’s public key
– No secret key need be shared

• A encrypts a nonce (random number) x using B’s public key
• B proves it can recover x
• A can authenticate itself to B in the same way

E(x, PublicB)

x

A B

58

How it works in TLS

• Type in your browser: https://www.amazon.com
• https = “Use HTTP over TLS”

– TLS = Transport Layer Security
– SSL = Secure Socket Layer (older version)
– RFC 4346, and many others

Goal: provide security layer (authentication, encryption) on top of transport layer
=> Fairly transparent to the app (once set up)

59

TLS: setup

• First: TCP handshake
SYN

SYN ACK

ACK

Browser Amazon

60

TLS: setup

• First: TCP handshake
• Client sends over list of crypto

protocols it supports
• Server picks crypto protocols to use

for this session

SYN

SYN ACK

ACK

Browser Amazon

Hello. I support(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~1 KB of data
61

TLS: setup

• First: TCP handshake
• Client sends over list of crypto

protocols it supports
• Server picks crypto protocols to use

for this session

• Use this to do two things:
– Create shared session key
– Verify server’s identity

SYN

SYN ACK

ACK

Browser Amazon

Hello. I support(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~1 KB of data
62

63

64

TLS + Authentication

TLS Goals

Authentication: verifying that the entity on the other end of the connection is who
they claim to be

65

TLS Goals

Authentication: verifying that the entity on the other end of the connection is who
they claim to be
• Technical aspects: crypto
• Social aspects

– How to distribute keys to entities
– What to do when things go wrong

66

TLS: relies on Public Key Infrastructure (PKI)
via certificates

The Challenge

67

bank.comYou

The Challenge

68

bank.comYou

(...part of handshake...)

Kpub,bank.com

The Challenge

69

bank.comYou

(...part of handshake...)

Kpub,bank.com
Pick challenge x

Enc(Kpub,bank.com, x)

The Challenge

What does this prove?

70

bank.comYou

(...part of handshake...)

Kpub,bank.com
Pick challenge x

Enc(Kpub,bank.com, x)

x' = Dec(Kpriv, x)
x'

x ?= x'

Authentication challenges

• Challenge proves that the server at bank.com holds K_priv
• Does NOT prove belong to the server belongs to your bank, the real-life bank

with your money

71

Authentication challenges

• Challenge proves that the server at yourbank.com holds K_priv
• Does NOT prove the server belongs to YourBank, the real-life bank that holds

your money

"But I'm visiting yourbank.com!"

72

Authentication challenges

• Challenge proves that the server at yourbank.com holds K_priv
• Does NOT prove the server belongs to YourBank, the real-life bank that holds

your money

"But I'm visiting yourbank.com!"
• DNS can be spoofed
• Possible active network attacker (redirecting your IP traffic to malicious

server)
• Domain names can expire and be re-registered...

73

Problem: How can we trust K_pub is
Your Bank's public key?

74

Problem: distributing trust

How can we trust Kpub is Your Bank's public key?
Problem: Trust distribution
• Hard to verify real-world identities
• Hard to scale to the whole Internet

Different protocols have different mechanisms
 => TLS (and others): Public Key Infrastructure (PKI) with certificates

75

76

PKI: The main idea
Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

CA

77

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

• If X wants a public key, request from CA
– CA validates X's identity, then signs X's public key

CA

Kpub,X

$$$ (maybe)

X

78

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

• If X wants a public key, request from CA
– CA supposed to validate X’s identity…

CA

Kpub,X

$$$ (maybe)

X
✅

79

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

• If X wants a public key, request from CA
– CA validates X's identity => if OK, signs X's public key
– Generates certificate

CA

Kpub,X

$$$ (maybe)

X

80

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

• If X wants a public key, request from CA
– CA validates X's identity, then signs X's public key
– Generates certificate

CA

Kpub,X

$$$ (usually)

s = Sign(Kpriv,CA, {Kpub,X, ... })

Cert = {Kpub,X, metadata, s}

X

81

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

• If X wants a public key, request from CA
– CA validates X's identity => if OK, signs X’s public key
– Generates certificate

• Client can verify Kpub,X from CA's signature:
 Verify(Kpub,CA Cert) => True/False

CA

Kpub,X

$$$ (maybe)

s = Sign(Kpriv,CA, {Kpub,X, ... })

Cert = {Kpub,X, metadata, s}

X

82

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

• If X wants a public key, request from CA
– CA validates X's identity => if OK signs X's public key
– Generates certificate

• Client can verify Kpub,X from CA's signature:
 Verify(Kpub,CA Cert) => True/False

CA

Kpub,X

$$$ (maybe)

s = Sign(Kpriv,CA, {Kpub,X, ... })

Cert = {Kpub,X, metadata, s}

=> Delegates trust for individual entity to a more trusted authority

X

83

84

What's in a certificate?

• Public key of entity (eg. yourbank.com)
• Common name: DNS name of server (yourbank.com)
• Contact info for organization

85

What's in a certificate?

• Public key of entity (eg. yourbank.com)
• Common name: DNS name of server (yourbank.com)
• Contact info for organization
• Validity dates (start date, expire date)
• URL of revocation center to check if key has been revoked

86

All of this is part of the data signed by the CA
=> Critical to check all parts during TLS startup!

87

What’s in a certificate?

88

89

PKI hierarchy

In reality, PKI creates a hierarchy of trust:
• Root CAs: kpub stored in virtually every browser, OS
– Private keys protected by most stringent security measures

(software, hardware, physical)

90

PKI hierarchy

In reality, PKI creates a hierarchy of trust:
• Root CAs: kpub stored in virtually every browser, OS
– Private keys protected by most stringent security measures

(software, hardware, physical)

• Intermediate CAs: kpub signed by root CA
– Sign certificates for general use (ie, regular websites)
– Doesn't require same protections as root

91

PKI hierarchy

In reality, PKI creates a hierarchy of trust:
• Root CAs: kpub stored in virtually every browser, OS
– Private keys protected by most stringent security measures

(software, hardware, physical)

• Intermediate CAs: kpub signed by root CA
– Sign certificates for general use (ie, regular websites)
– Doesn't require same protections as root

• General-use certificates: for a specific webserver

92

PKI hierarchy

In reality, PKI creates a hierarchy of trust:
• Root CAs: kpub stored in virtually every browser, OS
– Private keys protected by most stringent security measures

(software, hardware, physical)

• Intermediate CAs: kpub signed by root CA
– Sign certificates for general use (ie, regular websites)
– Doesn't require same protections as root

• General-use certificates: for a specific webserver

93
What happens if a root is compromised?

How the hierarchy works

94

B
(yourbank.com)Client

Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

How the hierarchy works

95

B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

How the hierarchy works

96

B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

Client's workflow:
• Checks metadata ✅
• Verify(CertB, Kpub,Int) ✅
• Verify(CertInt, Kpub,Root) ✅

How the hierarchy works

97

B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

Client's workflow:
• Checks metadata ✅
• Verify(CertB, Kpub,Int) ✅
• Verify(CertInt, Kpub,Root) ✅ => To verify integrity, need to verify certificates back to

(trusted) root certificate
=> OK if verification passes and metadata correct: 🔒

98

Most common TLS errors you might see

• Common name (eg. yourbank.com) invalid
• Self-signed
• Certificate expired

When is it okay to click "proceed"? What happens if you do?

99

Most common TLS errors you might see

• Common name invalid
• Self-signed
• Certificate expired

 When is it okay to click "proceed"? What happens if you do?

100

=> Might occur if webserver configured improperly, or if you're
setting up a system

Rogue Certificates?

• In 2011, DigiNotar, a Dutch root certificate authority, was
compromised

• The attacker created rogue certificates for popular domains like
google.com and yahoo.com

• DigiNotar was distrusted by browsers and filed for bankruptcy
• See the incident investigation report by Fox-IT

101

http://www.rijksoverheid.nl/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1.html

• In 2017, Google questioned the certificate issuance policies and
practices of Symantec

• Google’s Chrome would start distrusting Symantec’s certificates
unless certain remediation steps were taken

• See back and forth between Ryan Sleevi (Chromium team) and
Symantec

• The matter was settled with DigiCert acquiring Symantec’s certificate
business

102

https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-woodshed-for-mis-issuing-30000-https-certs/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/

TLS decryption

What happens when an organization wants to view TLS traffic on its network?

103

104

Example: https://www.a10networks.com/products/thunder-ssli/

https://www.a10networks.com/products/thunder-ssli/

105

PKIs, TLS, and HTTPS

The story so far

• Asymmetric crypto: each entity gets a key in two parts
– Kpriv: Private key, kept secret
– Kpub: Public key, shared with everyone

• Can provide important security properties
– Authentication/Integrity: A signs message with Kpriv,A, anyone with Kpub,A can verify message

came from A
– Confidentiality: A encrypts message to B with Kpub,B, B can decrypt with Kpriv,B

• But: how do we know if we can trust a public key?

106

Public Key Infrastructure (PKI)

Public key crypto is very powerful …
• … but the realities of tying public keys to real world identities turn out to be quite

hard

• PKI: Trust distribution mechanism
– Authentication via Digital Certificates

• Note: Trust doesn’t mean someone is honest, just that they are who they say they
are…

107

Managing Trust

• The most solid level of trust is rooted in our direct personal experience
– E.g., Alice’s trust that Bob is who they say they are
– Clearly doesn’t scale to a global network!

• In its absence, we rely on delegation
– Alice trusts Bob’s identity because Charlie attests to it ….
– …. and Alice trusts Charlie

108

Managing Trust, con’t

• Trust is not particularly transitive
– Should Alice trust Bob because she trusts Charlie …
– … and Charlie vouches for Donna …
– … and Donna says Eve is trustworthy …
– … and Eve vouches for Bob’s identity?

• Two models of delegating trust
– Rely on your set of friends and their friends

• “Web of trust” -- e.g., PGP

– Rely on trusted, well-known authorities (and those they trust…)
• “Trusted root” -- e.g., HTTPS

109

PKI Conceptual framework

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs
• To publish a public key for entity X, root CA R signs X’s public key

– What this means: CA agrees that this is X’s public key
– Creates a Certificate: {Kpub,X, signature, metadata}

• Given signature, anyone who knows the root can verify
– Delegates trust of Kpub,X to CA
– If you trust the CA, you now trust X

• Root CAs: pre-installed in your system/browser

110

What’s in a certificate?

111

112

PKI hierarchy

• In reality, hierarchy of trust
• Root CAs sign certificates for Intermediate CAs
• Intermediate CAs sign certificates for general users/sites

The further up the hierarchy, the more protections it needs
• CA’s often use Hardware Security Modules (HSMs), other physical protections…
• What happens if a CA is compromised?

113

PKI Example

114

Inside the Server’s Certificate

• Common name: Domain name for cert (e.g., amazon.com)
• Amazon’s public key
• A bunch of auxiliary info (physical address, type of cert, expiration time)
• URL to revocation center to check for revoked keys
• Name of certificate’s signatory (who signed it)
• A public-key signature of a hash of all this

– Constructed using the signatory’s private RSA key

115

Validating Amazon’s Identity

• Browser retrieves cert belonging to the signatory

• If it can’t find the cert, then warns the user that site has not been verified
– And may ask whether to continue
– Could still proceed, just without authentication

• Browser uses public key in signatory’s cert to decrypt signature
– Compares with its own hash of Amazon’s cert

• Assuming signature matches, now have high confidence it’s indeed Amazon
– … assuming signatory is trustworthy

117

HTTPS Connection (SSL/TLS), con’t

• Browser constructs a random
session key K

• Browser encrypts K using Amazon’s
public key

• Browser sends E(K, KApublic) to server
• Browser displays 🔒
• All subsequent communication

encrypted w/ symmetric cipher
using key K
– E.g., client can authenticate using a

password

Browser Amazon

Here’s my cert

~1 KB of data

E(K, KApublic)
K

K

E(password …, K)

E(response …, K)

Agreed

118

When does this break down?

• TLS is hard to implement
• Need to trust the CAs
• Users need to understand warnings

119

Server

Wikipedia table, source: https://www.ssllabs.com/ssl-pulse/120

121

Digital Signatures

• Suppose Alice has published public key KE

• If she wishes to prove who she is, she can send a message x
encrypted with her private key KD

– Therefore: anyone w/ public key KE can recover x, verify that Alice
must have sent the message

– It provides a digital signature
– Alice can’t deny later deny it Þ non-repudiation

122

RSA Crypto & Signatures, con’t

123

Summary of Our Crypto Toolkit

• If we can securely distribute a key, then
– Symmetric ciphers (e.g., AES) offer fast, presumably strong

confidentiality
• Public key cryptography can make this easier (can share

public keys anywhere)
– But not as computationally efficient
– Use public key crypto to exchange session key, which is used for

symmetric encryption
– And not guaranteed secure

• but major result if not

124

Summary of Our Crypto Toolkit, con’t

• Cryptographically strong hash functions provide major building block for integrity
(e.g., SHA-256)
– As well as providing concise digests
– And providing a way to prove you know something (e.g., passwords) without revealing it (non-

invertibility)
– But: worrisome recent results regarding their strength (MD5, SHA1)

• Public key also gives us signatures
– Including sender non-repudiation

• Turns out there’s a crypto trick based on similar algorithms that allows two parties
who don’t know each other’s public key to securely negotiate a secret key even in
the presence of eavesdroppers
– Look up: Diffie-Hellman Key Exchange

125

