CSCI-1680
TLS

Nick DeMarinis

1
Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

» Thanksgiving break!
— No hours/Ed support Wed-Fri

» TCP grading: after break, signups on Mon, Dec 2

— You can work on your readme, fix small bugs before meeting without using late
days

Administrivia

TCP was due Friday, Nov 22

— Like with IP: you can continue to make small bugfixes after the deadline
« OK: Fixing small bugs, README, capture files, code cleanup

* Not OK: eg. implementing sendfile/recvfile, teardown, submitting
untested code

— Grading meetings: after break

After break: HWS5, small SRC component, final project

Administrivia

TCP was due Friday, Nov 22

— Like with IP: you can continue to make small bugfixes after the deadline
« OK: Fixing small bugs, README, capture files, code cleanup

* Not OK: eg. implementing sendfile/recvfile, teardown, submitting
untested code

— Grading meetings: after break

The tinal project

Out after break, handout online after class
...maybe skim it before break?

The tinal project

Out after break, handout online after class
...maybe skim it before break?

What it is
» Open-ended: build something new related to class topics

» List of ideas in document... or propose your own!

Project examples
* Make your own iterative DNS resolver
* Make your own web AP| / responsive website

. Implke)ment something (eg. Snowcast), etc. using RPCs (more next
wee

Build your own traffic analyzer

Extend your IP/TCP in some way...

Project examples
* Make your own iterative DNS resolver
* Make your own web AP| / responsive website

. Implke)ment something (eg. Snowcast), etc. using RPCs (more next
wee

Build your own traffic analyzer

Extend your IP/TCP in some way...

-
These are only a few ideas! }

Final project Logistics

Out after break, document online after class
...maybe skim it before break?

Deadlines

— Team assignment form: Due Monday, 12/2

» Keep your current groups, or form new ones, or work solo
— Project proposal: Due Friday, 12/6
— Final submission: Due Thursday, 12/16

func VWrite(toSend) {
snd.add(toSend)

}

func SendThread() {
for {

if canSend() && snd.hasBytes() {
doSend()

func VWrite(toSend) { func VWrite(toSend) {

snd.add(toSend) snd.add(toSend)
sendChan <- true

} }

func SendThread() { func SendThread() {
for { for {

<- sendChan
if canSend() && snd.hasBytes() { if canSend() && snd.hasBytes() {
doSend() doSend ()

Warmup: what's the functional difference between these?
(And why did we prefer version 27?)

Version 1 Version 2: signal channel when writing
func VWrite(toSend) { func VWrite(toSend) {
snd.add(toSend) snd.add(toSend)
sendChan <- true
} }
func SendThread() { func SendThread() {
for { for {
<- sendChan
if canSend() && snd.hasBytes() { if canSend() && snd.hasBytes() {
doSend() doSend()
} }
} }

} }

12

func VWrite(toSend) {

snd.add(toSend)
sendChan <- true

}

func SendThread() {
for {

<- sendChan
if canSend() && snd.hasBytes() {
doSend()

func VWrite(toSend) {

snd.add(toSend)
sendChan <- true

}

func SendThread() {
for {

<- sendChan
if canSend() && snd.hasBytes() {
doSend()

"| thought using threads was good?!” &

Up to the kernel to decide how to schedule
threads

How long before next thread wakes up????

=> Depends on how long the kernel takes
to get around to it!

func VWrite(toSend) {

snd.add(toSend)
sendChan <- true

}

func SendThread() {

for {
<- sendChan

if canSend() && snd.hasBytes() {
doSend()

¥

}
}

15

Modern enterprise network cards

40-100+ Gbps

VS.

Linux kernel

16

Lot of ongoing work in this area

» Work to improve kernel performance
» Kernel bypass: circumvent kernel entirely

* Help from hardware: offload things like checksum, batching of segments, even
more...

| am absolutely not an expert on this...

17

Example: kernel bypass

Data Plane Development Kit

Article Talk

From Wikipedia, the free encyclopedia

(Redirected from DPDK)

The Data Plane Development Kit (DPDK) is an open source software project
managed by the Linux Foundation. It provides a set of data plane libraries and network
interface controller polling-mode drivers for offloading TCP packet processing from the
operating system kernel to processes running in user space. This offloading achieves
higher computing efficiency and higher packet throughput than is possible using the
interrupt-driven processing provided in the kernel.

Xp 5languages v

Read Edit View history Tools w

DPDK

20Prb

EVELOPMENT KIT

Stable release 24.07 / 31 July 2024(1]

Repository git.dpdk.org 2

18

Example: help from hardware

Broadcom Ethernet Network Adapter User Guide Search this product Q

Adapter Tuning
NUMA: Local vs. Non Local
Configuring Queues

Configuring IRQ and
Application Affinity

TX and RX Flow Steering
TX and RX Queue Size
Interrupt Moderation

GRO (Generic Receive
Offload)

Relaxed Ordering

PCle MRRS (Maximum Read
Request Size)

GRO (Generic Receive Offload)

Last Updated September 27, 2024

Provides information on GRO (Generic Receive Offload) and how it can be used to combine receive
packets into a single packet.

GRO is an aggregation technique to coalesce several receive packets from a stream into a single large
packet, thus saving CPU cycles as fewer packets need to be processed by the kernel. By default, GRO is
accomplished in the Linux kernel, however, Broadcom NICs support Hardware GRO.

ethtool -K [interfacel rx-gro-hw on lro off gro on

Broadcom NICs support the aggregation in HW and it can coexist with SW GRO.

19

IPOAC

How can we improve the physical layer?

Traditional links have fixed bandwidth H ' X
« Media limits what frequencies can be used for signal [b N
* Places upper bound on channel capacity l‘f;

: 4 5 6 7
22 2.427 2.432 2.437 2.442 2.447

What it we weren't constrained by the EM spectrum?

How else can we transmit data?

Network Working Group D. Waitzman
Request for Comments: 1149 BBN STC
1 April 1990

A Standard for the Transmission of IP Datagrams on Avian Carriers

Status of this Memo

This memo describes an experimental method for the encapsulation of

IP datagrams in avian carriers. This specification is primarily
useful in Metropolitan Area Networks. This is an experimental, not
recommended standard. Distribution of this memo is unlimited.

Overview and Rational

Avian carriers can provide high delay, low throughput, and low
altitude service. The connection topology is limited to a single
point-to-point path for each carrier, used with standard carriers,
but many carriers can be used without significant interference with
each other, outside of early spring. This is because of the 3D ether

RFC1149: IPoAC

IP over Avian Carriers (1 April 1990)

High delay, low throughput, low
altitude datagram service

Nearly unlimited movement in 3D
etherspace

Intrinsic collision avoidance
Typical MTU: 256 milligrams

D. Waitzman
BBN STC
1 April 1990

Network Working Group
Request for Comments: 1149

A Standard for the Transmission of IP Datagrams on Avian Carriers

Status of this Memo

This memo describes an experimental method for the encapsulation of
IP datagrams in avian carriers.

IPOAC: Design

IPOAC: Implementation

Proof of concept: 28 April 2001
Bergen, Norway
https://web.archive.org/web/20140215072548/http://www.blug.linux.no/rfc1149/

https://web.archive.org/web/20140215072548/http:/www.blug.linux.no/rfc1149/

IPOAC in practice

$ ping -c 9 -i 900 10.0.3.1

PING 10.0.3.1 (10.0.3.1): 56 data bytes

64 bytes from 10.0.3.1: icmp_seq=0 ttl=255 time=6165731.1 ms
64 bytes from 10.0.3.1: icmp_seq=4 ttl=255 time=3211900.8 ms
64 bytes from 10.0.3.1: icmp _seq=2 ttl=255 time=5124922.8 ms
64 bytes from 10.0.3.1: icmp _seq=1 ttl=255 time=6388671.9 ms

--- 10.0.3.1 ping statistics ---

9 packets transmitted, 4 packets received, 55% packet loss round-trip
min/avg/max = 3211900.8/5222806.6/6388671.9 ms

IPOAC: (more) Modern implementations

Pigeon-powered Internet takes

flight

BUSINESS

One of the Internet's

to life: transmitting n{ Pigeon carries data bundles faster than

Telkom

, Stephen Shankland Staff Reporter 10 Sep 2009
Jan. 2, 2002 4:43 p.m. PT

s ﬁ A
. B = 77

But actually

What happens if you have a LOT of data to move into the cloud?

But actually

What happens if you have a LOT of data to move into the cloud?
Example: AWS

aWS Contact Us Supportv Englishv My Account~ Sign In
5 PP 9 y 9 Create an AWS Account

recinvent Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events ExploreM > Q

AWS Snow Family Overview FAQs AWSSnowcone AWS Snowball AWS Snowmobile

AWS Snow Family

Move petabytes of data to and from AWS, or process data at
the edge

Purpose-built devices to cost Field-tested for the most extreme Device options range to optimize for
effectively move petabytes of data, conditions, delivering high security space- or weight-constrained
offline. Lease a Snow device to move and ruggedization into compute and environments, portability, and

your data to the cloud. storage-compatible devices. flexible networking options.

Feature comparison matrix

AWS SNOWBALL
AWS SNOWCONE AWS SNOWBALL EDGE STORAGE OPTIMIZED EDGE COMPUTE AWS SNOWMOBILE
OPTIMIZED

Usable HDD Storage 8TB 80TB N/A
Usable SSD Storage 147TB 17TB 28 TB No
Usable vCPUs 4 vCPUs 40 vCPUs 104 vCPUs N/A

Usable Memory 4 GB 80 GB 416 GB N/A

9in x 6in x 3in
)) 548 mm x 320 mm x o .
Device Size 548 mm x 320 mm x 507 mm 45 ft. shipping container

227 mm x 148.6 mm x 82.65 mm >01 mm
Device Weight 4.5 |bs. (2.1 kg) 49.7 lbs. (22.3 kqg) 49.7 lbs. (22.3 kqg) N/A
Storage Clustering No Yes, 5-10 nodes Yes, 5-10 nodes N/A
256-bit Encryption Yes Yes Yes

HIPAA Compliant Yes, eligible Yes, eligible Yes, eligible

RFC791: IPv4 Header

+—t—t—t—t—t—t—t -ttt -ttt -ttt -ttt -ttt -ttt -ttt =t -+ -+
Version| IHL |Type of Service Total Length
+—t—t—t—t—t—t—t -ttt -ttt -ttt -t -ttt -ttt =ttt =t =t =t ==+ -+
Identification Flags | Fragment Offset
+—t—t—t—t—t—t—t -ttt -ttt -ttt -t -ttt -ttt -ttt -ttt -t =+ -+
Time to Live | Protocol Header Checksum
+—t—t—t—t—t—F—F—t—F—t—t—F—F -ttt -ttt -ttt -ttt -t -t —F -t -+ -+
Source Address
+—t—t—t—t—t—t—t -ttt -ttt -ttt —t =ttt -ttt =ttt =ttt =t =+ -+
Destination Address
+—t—t—t -ttt -ttt -ttt -ttt -ttt -ttt -ttt -ttt =t -+ -+
Data
+—t—t—t—t—t—t—t -ttt -ttt -ttt -t -ttt =ttt =ttt =t =t =t ==+ -+

The Internet Header Format [RFC-791]

IP over Burrito Carriers

tet—t—t—t—t—t—t—t—t—t—t—t—t bttt ettt ettt -ttt -ttt —+—+
|Obvious| Onion | Jalapenos | Physical Length (mm) |
tet—t—tt—t—t—t—t—t—tot—t—t bttt —t bttt ottt —F—t—F—t—t—+—+
Number Written on Foil |Bean Type| Number of Beans |
tet—t—t—t—t—t—t—t—t—t—t—t—t—t -ttt -ttt -ttt -ttt —F—t—t—+—+
| Given Delivery Time | Guacamole | Receipt

bbbttt bttt totot bttt ot ot ottt bttt =ttt —F—+—+

Lettuce

tototototott bttt tot ottt bttt ettt bttt —F—t—F—+—+

Rice

s R SN ST S S

Beef

s S S S R S

The Burrito Internet Header Format

April Fool's Day RFCs

April Fools' Day Request for Comments

From Wikipedia, the free encyclopedia
(Redirected from Peg DHCP)

A Request for Comments (RFC), in the context of Internet governance, is a type of publication from the Internet Engineering Task Force (IETF) and the Internd
behaviors, research, or innovations applicable to the working of the Internet and Internet-connected systems.

Almost every April Fools' Day (1 April) since 1989, the Internet RFC Editor has published one or more humorous Request for Comments (RFC) documents, fo
RFC 527 called ARPAWOCKY, a parody of Lewis Carroll's nonsense poem "Jabberwocky". The following list also includes humorous RFCs published on othe

Contents [hide]
1 List of April Fools' RFCs
2 Other humorous RFCs
3 Non-RFC IETF humor
4 Submission of April Fools' Day RFCs
5 References
6 Further reading
7 External links

List of April Fools' RFCs [edit]
1978
M. R. Crispin (1 April 1978). TELNET RANDOMLY-LOSE option®2. IETF. doi:10.17487/RFC0748 3. RFC 748 2.

A parody of the TCP/IP documentation style. For a long time it was specially marked in the RFC index with "note date of issue".

1989

Enjoy!

https://en.wikipedia.org/wiki/April_Fools%27_Day_Request_for_Comments

36

37

This is not a security class
(as much as | would like it to be...)

* Thisisn't intended to be a lecture on all crypto

* | want you to appreciate the important principles, understand what's important for
TLS (and other protocols like it)

Want to know more?

38

This is not a security class
(as much as | would like it to be...)

* Thisisn't intended to be a lecture on all crypto

* | want you to appreciate the important principles, understand what's important for
TLS (and other protocols like it)

Want to know more?

« CS1660 (Spring): Intro to Computer Systems Security

« CS1515 (Spring): Applied cryptography

« CS1510 (Fall): Intro to Cryptography and Computer Security

39

Internet’s Design: Insecure

Designed for simplicity in a naive era
Lots of insecure systems that can be compromised

No central administration => hard to diagnose, coordinate fixes

40

What can go wrong?

-

Attacker

41

(some) Key security properties

« Confidentiality

e Authentication

* Integrity

42

(some) Key security properties

+ Confidentiality: prevent adversary from reading the data
=> Protect against eavesdropping, sniffing

 Authentication: verifying the identity of a message or actor
=> Protect against spoofing, impersonation

* Integrity: make sure messages arrive in original form
=> Protect against tampering

43

(some) Key security properties

+ Confidentiality: prevent adversary from reading the data
=> Protect against eavesdropping, sniffing

 Authentication: verifying the identity of a message or actor
=> Protect against spoofing, impersonation

* Integrity: make sure messages arrive in original form
=> Protect against tampering

[There are more security properties, but we'll stick to these => Focus of TLS }

44

Other important security properties

 Availability: Will the network deliver data?
— Protect against infrastructure compromise, DDoS

* Provenance Who is responsible for this data?
— Prevent forging responses, denying responsibility; prove who created the data

e Authorization: is actor allowed to do this action?

» Appropriate use: is action consistent with policy? (spam, copyright, ...)

* Anonymity: can someone tell what packets [am sending?

45

TLS: Transport layer security

TLS 1.0 (1999) => TLS 1.3 (2018)

Bidirectional pipe between two parties providing:
— Confidentiality
— Integrity
— Authentication

46

TLS: Transport layer security

Bidirectional pipe between two parties providing:
— Confidentiality
— Integrity
— Authentication

—o_—-
.

[Are these all the security properties we might want? No!

N J

Where does TLS go?

Application

Transport How to support multiple applications?

Network Moving data between hosts (nodes)

Link Move data across individual links

Service: move bits to other node across link

Physical

48

Throwback: The OSI model

End host

Application Protocol

Application

Presentation

Session

Transport

Transport Protocol

Presentation

Session

W W W

*Networ rOtOCQhmm cmm—

Network == mr == == ==

Network Network

== wm Network

ink-Layer Protocolmmmy amm—

Data link «= w - - SN Data link == == = «= Data link

ii

Physical Physical ~— Physical

One or more nodes
within the network

Physical

49

50

Fundamental crypto properties we neead

51

Symmetric cryptography

* A, B share secret key k
» Examples: AES, Serpent, Whirlpool, DES (old, insecure), ...
* Provides: confidentiality (encrypt/decrypt), integrity (MAC)

Symmetric crypto: strong, fast, but parties need to have shared key k
=> Key distribution is hard, why?

52

Confidentiality: Symmetric encryption

Plaintext

Encrypt with
secret key

Plaintext

Decrypt with
secret key

53

Confidentiality: Asymmetric encryption

Everyone has two keys: k_pub, k_priv

54

Confidentiality: Asymmetric encryption

» Everyone has two keys: k_pub, k_priv
— k_pub: Public key, widely-known
— k_priv: Private key, kept secret

« Used for: authentication, signing (and confidentiality, integrity)

55

Public Key / Asymmetric Encryption

 Sender uses receiver’s public key
— Advertised to everyone

* Receiver uses complementary private key
— Must be kept secret

Plaintext Plaintext

A

Encrypt with Decrypt with

public key private key

56

What can we do with this?

57

Public Key Authentication

Each side need only to know the other side’s public key

— No secret key need be shared

A encrypts a nonce (random number) x using B’s public key

B proves it can recover x
A can authenticate itself to B in the same way A

= Pupij Cg)

58

How it works in TLS

* Type in your browser: https://www.amazon.com

* https = “Use HTTP over TLS”
— TLS = Transport Layer Security

— SSL = Secure Socket Layer (older version)
— RFC 4346, and many others

Goal: provide security layer (authentication, encryption) on top of transport layer
=> Fairly transparent to the app (once set up)

59

TLS: setup

e First: TCP handshake

Browser Amazon

SYN

AC\K
y

ACK

60

TLS: setup

e First: TCP handshake

* Client sends over list of crypto
protocols it supports

* Server picks crypto protocols to use
for this session

Browser

Amazon

61

TLS: setup

e First: TCP handshake

* Client sends over list of crypto
protocols it supports

* Server picks crypto protocols to use
for this session

 Use this to do two things:
— Create shared session key
— Verify server’s identity

Browser

Amazon

62

IX00 , OXAU
0x00,0xAl
0x00,0xA2
0x00,0xA3
0x00,0xA4
0x00,0xA5
0x00,0xA6
0x00,0xA7
0x00,0xA8
0x00,0xA9
0x00,0xAA
0x00,0xAB
0x00,0xAC
0x00,0xAD
0x00,0xAE
0x00,0xAF

DH RSA WITH A 3 VI_SHAZ56
TLS_DH_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
TLS_DH_DSS_WITH_AES_128_GCM_SHA256
TLS_DH_DSS_WITH_AES_256_GCM_SHA384
TLS_DH_anon_WITH_AES_128_GCM_SHA256
TLS_DH_anon_WITH_AES_256_GCM_SHA384
TLS_PSK_WITH_AES_128_GCM_SHA256

TLS_PSK_WITH_AES_256_GCM_SHA384

TLS_DHE_PSK_WITH_AES_128_GCM_SHA256
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384
TLS_RSA_PSK_WITH_AES_128_GCM_SHA256
TLS_RSA_PSK_WITH_AES_256_GCM_SHA384
TLS_PSK_WITH_AES_128_CBC_SHA256

TLS_PSK_WITH_AES_256_CBC_SHA384

< < < < < << <=<=<=<=<=< =< <

|

Z2 22 Z < < zZzzZzzZzzZzzZzzZzZzZZ

[RFC5288]
[RFC5288]
[RFC5288]
[RFC5288]
[RFC5288]
[RFC5288]
[RFC5288]
[RFC5487]
[RFC5487]
[RFC5487]
[RFC5487]
[RFC5487]
[RFC5487]
[RFC5487]
[RFC5487]

TLS + Authentication

64

TLS Goals

Authentication: veritying that the entity on the other end of the connection is who
they claim to be

65

TLS Goals

Authentication: veritying that the entity on the other end of the connection is who
they claim to be

 Technical aspects: crypto
* Social aspects

— How to distribute keys to entities
— What to do when things go wrong

TLS: relies on Public Key Infrastructure (PKI)
via certificates

66

The Challenge

The Challenge

(...part of handshake...)

’

Kpub,bank.com

68

The Challenge

| (...part of handshake...) -

Kpub,bank.com

Pick challenge x
Enc(Kpub,bank.com, x)

The Challenge

Pick challenge x

(...part of handshake...)

Kpub,bank.com

Enc(Kpub,bank.com, x)

X

>

What does this prove?

x' = Dec(Kpriv, x)

70

Authentication challenges

+ Challenge proves that the server at bank.com holds K_priv

* Does NOT prove belong to the server belongs to your bank, the real-life bank
with your money

71

Authentication challenges

 Challenge proves that the server at yourbank.com holds K_priv

* Does NOT prove the server belongs to YourBank, the real-life bank that holds
your money

"But |I'm visiting yourbank.com!"

72

Authentication challenges

 Challenge proves that the server at yourbank.com holds K_priv

* Does NOT prove the server belongs to YourBank, the real-life bank that holds
your money

"But I'm visiting yourbank.com!"
* DNS can be spoofed

 Possible active network attacker (redirecting your IP traffic to malicious
server)

* Domain names can expire and be re-registered...

73

Problem: How can we trust K_pub is
Your Bank's public key?

74

Problem: distributing trust

How can we trust Kpub is Your Bank's public key?
Problem: Trust distribution

« Hard to verify real-world identities

« Hard to scale to the whole Internet

Different protocols have different mechanisms
=> TLS (and others): Public Key Infrastructure (PKI) with certificates

75

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)

 Everyone knows public key for some root CAs
— Pre-installed into browser/OS

CA

VAS)

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)

 Everyone knows public key for some root CAs
— Pre-installed into browser/OS

* |t X wants a public key, request from CA
— CA validates X's identity, then signs X's public key

O

Kpub,X

I 5SS (maybe)

CA

77

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)

 Everyone knows public key for some root CAs
— Pre-installed into browser/OS

* |t X wants a public key, request from CA
— CA supposed to validate X's identity...

Kpub,X

5SS (maybe)

CA

78

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)

 Everyone knows public key for some root CAs
— Pre-installed into browser/OS

» If X wants a public key, request from CA
— CA validates X's identity => if OK, signs X's public key
— Generates certificate

O

Kpub,X

I 5SS (maybe)

CA

79

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)

 Everyone knows public key for some root CAs
— Pre-installed into browser/OS

» If X wants a public key, request from CA
— CA validates X's identity, then signs X's public key
— Generates certificate

O

Kpub,X

5SS (usually)

S= Sign(Kpriv,CAr {Kpub,Xr })

Cert = {K,,, x, metadata, s}

80

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
 Everyone knows public key for some root CAs

— Pre-installed into browser/QOS

* |t X wants a public key, request from CA
— CA validates X's identity => if OK, signs X's public key
— Generates certificate
» Client can verify K, x from CA's signature:
Verify(Kop ca Cert) => True/False

O

Kpub,X

5SS (maybe)

S= Sign(Kpriv,CAr {Kpub,Xr })

Cert = {K,,px, metadata, s}

81

PKI: The main idea @

Public keys managed by Certificate Authorities (CAs) Koun x

» Everyone knows public key for some root CAs 255 (maybe)
— Pre-installed into browser/OS

CA

» It X wants a public key, request from CA
— CA validates X's identity => if OK signs X's public key l

— Generates certificate

» Client can verity K, x from CA's signature:

Verify(Ko,p ca Cert) => True/False s = Sign(Kyriv,car {Kpub,xs -+ 1)

Cert = {K,,p x, metadata, s}

[=> Delegates trust for individual entity to a more trusted authority }
82

DigiCert Assured ID Root CA

DigiCert Assured ID Root CA

Root certificate authority

Expires: Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time
@ This certificate is valid

Trust
Details
Subject Name
Country or Region
Organization
Organizational Unit
Common Name

Issuer Name
Country or Region
Organization
Organizational Unit
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not Valid After

Public Key Info
Algorithm
Parameters
Public Key
Exponent

Key Size

Key Usage

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

OC E7 EO E5 17 D8 46 FE 8F E5 60 FC 1B FO 30 39
3

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
None

Thursday, November 9, 2006 at 19:00:00 Eastern Standard Time
Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time

RSA Encryption (1.2.840.113549.1.1.1)
None

256 bytes : AD OE 15 CEE4 4380 5C ...
65537

2,048 bits

Verify

Keychain Access

All Items Passwords Secure Notes My Certificates Keys Certificates

oot

>
(6 Jerlifieate

Amazon Root CA 1
Root certificate authority
Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time

@ This certificate is valid

4
)
3
o

1 5 5

1 7 1 KD

A

AAA Certificate Services

AC RAIZ FNMT-RCM

Actalis Authentication Root CA
AffirmTrust Commercial

AffirmTrust Networking
AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Amazon Root CA 2

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Certum CA

Certum Trusted Network CA

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

Date Modified

Expires

Dec 31, 2028 at 18:59:59
Dec 31, 2029 at 19:00:00
Sep 22, 2030 at 07:22:02
Dec 31, 2030 at 09:06:06
Dec 31, 2030 at 09:08:24
Dec 31, 2040 at 09:10:36
Dec 31, 2040 at 09:20:24
Jan 16, 2038 at 19:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
Jun 5, 2033 at 13:45:38
Feb 9, 2035 at 16:40:36
Apr 30, 2039 at 14:10:09
Apr 30, 2039 at 14:19:06
Feb 9, 2025 at 19:18:14
Dec 31, 2030 at 18:59:59
Dec 31, 2030 at 03:38:15
Dec 17, 2030 at 18:59:59
May 12, 2025 at 19:59:00
Oct 26, 2040 at 04:38:03
Oct 26, 2040 at 04:28:58
Jul 19, 2042 at 05:06:56
Jul 19, 2042 at 05:15:30
Jun 29, 2027 at 11:13:05
Sep 17, 2028 at 04:28:59
Oct 21, 2033 at 05:17:18
Jan 14, 2038 at 19:00:00
Jan 14, 2038 at 19:00:00
Jul 4, 2031 at 13:20:04
Jun 11, 2027 at 06:46:39
Dec 31, 2029 at 07:07:37

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

What's in a certificate?

« Public key of entity (eg. yourbank.com)
 Common name: DNS name of server (yourbank.com)
« Contact info for organization

85

What's in a certificate?

« Public key of entity (eg. yourbank.com)

« Common name: DNS name of server (yourbank.com)

« Contact info for organization

» Validity dates (start date, expire date)

« URL of revocation center to check if key has been revoked

All of this is part of the data signed by the CA
=> Critical to check all parts during TLS startup!

86

Certificate Viewer: www.cs.brown.edu

General | Details
Certificate Hierarchy

v USERTrust RSA Certification Authority
¥ InCommon RSA Server CA

www.cs.brown.edu

Certificate Fields

Issuer
v Validity
Not Before
Not After

Subject

v Subject Public Key Info

Subject Public Key Algorithm

Subject's Public Key

Field Value

CN = www.cs.brown.edu
O = Brown University
ST = Rhode Island
CcC=Us

87

DigiCert Assured ID Root CA

DigiCert Assured ID Root CA

Root certificate authority

Expires: Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time
@ This certificate is valid

Trust
Details
Subject Name
Country or Region
Organization
Organizational Unit
Common Name

Issuer Name
Country or Region
Organization
Organizational Unit
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not Valid After

Public Key Info
Algorithm
Parameters
Public Key
Exponent

Key Size

Key Usage

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

OC E7 EO E5 17 D8 46 FE 8F E5 60 FC 1B FO 30 39
3

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
None

Thursday, November 9, 2006 at 19:00:00 Eastern Standard Time
Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time

RSA Encryption (1.2.840.113549.1.1.1)
None

256 bytes : AD OE 15 CEE4 4380 5C ...
65537

2,048 bits

Verify

Keychain Access

All Items Passwords Secure Notes My Certificates Keys Certificates

oot

>
(6 Jerlifieate

Amazon Root CA 1
Root certificate authority
Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time

@ This certificate is valid

4
)
3
o

1 5 5

1 7 1 KD

A

AAA Certificate Services

AC RAIZ FNMT-RCM

Actalis Authentication Root CA
AffirmTrust Commercial

AffirmTrust Networking
AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Amazon Root CA 2

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Certum CA

Certum Trusted Network CA

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

Date Modified

Expires

Dec 31, 2028 at 18:59:59
Dec 31, 2029 at 19:00:00
Sep 22, 2030 at 07:22:02
Dec 31, 2030 at 09:06:06
Dec 31, 2030 at 09:08:24
Dec 31, 2040 at 09:10:36
Dec 31, 2040 at 09:20:24
Jan 16, 2038 at 19:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
Jun 5, 2033 at 13:45:38
Feb 9, 2035 at 16:40:36
Apr 30, 2039 at 14:10:09
Apr 30, 2039 at 14:19:06
Feb 9, 2025 at 19:18:14
Dec 31, 2030 at 18:59:59
Dec 31, 2030 at 03:38:15
Dec 17, 2030 at 18:59:59
May 12, 2025 at 19:59:00
Oct 26, 2040 at 04:38:03
Oct 26, 2040 at 04:28:58
Jul 19, 2042 at 05:06:56
Jul 19, 2042 at 05:15:30
Jun 29, 2027 at 11:13:05
Sep 17, 2028 at 04:28:59
Oct 21, 2033 at 05:17:18
Jan 14, 2038 at 19:00:00
Jan 14, 2038 at 19:00:00
Jul 4, 2031 at 13:20:04
Jun 11, 2027 at 06:46:39
Dec 31, 2029 at 07:07:37

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

PKI hierarchy

In reality, PKI| creates a hierarchy of trust:

* Root CAs: k,, stored in virtually every browser, OS

— Private keys protected by most stringent security measures
(software, hardware, physical)

90

PKI hierarchy

In reality, PKI| creates a hierarchy of trust:

* Root CAs: k,, stored in virtually every browser, OS

— Private keys protected by most stringent security measures
(software, hardware, physical)

* Intermediate CAs: k,, signed by root CA

— Sign certificates for general use (ie, regular websites)
— Doesn't require same protections as root

91

PKI hierarchy

In reality, PKI creates a hierarchy of trust:

* Root CAs: k,, stored in virtually every browser, OS

— Private keys protected by most stringent security measures
(software, hardware, physical)

* Intermediate CAs: k,, signed by root CA

— Sign certificates for general use (ie, regular websites)
— Doesn't require same protections as root

* General-use certificates: for a specific webserver

92

PKI hierarchy

In reality, PKI creates a hierarchy of trust:

* Root CAs: k,, stored in virtually every browser, OS

— Private keys protected by most stringent security measures
(software, hardware, physical)

* Intermediate CAs: k,, signed by root CA

— Sign certificates for general use (ie, regular websites)
— Doesn't require same protections as root

* General-use certificates: for a specific webserver

[What happens it a root is compromised?

How the hierarchy works

Ex. Server has certificate from Intermediate CA,;

B has:

Kpub,Root :
- * Kpriv,B

* CertB= { Kpub,Br Sign(Kpub’B, Kpriv,lnt)i e }

94

How the hierarchy works

Ex. Server has certificate from Intermediate CA,;

| (TLS handshake) o Bhas:

* Kpriv,B
* CertB= { Kpub,Br Sign(Kpub’B, Kpriv,lnt)i e }

Kpub,Root
{Certg, Cert;:}

95

How the hierarchy works

Ex. Server has certificate from Intermediate CA,;

| (TLS handshake)

» B has:

Kpub,Root

fCIient's workflow:

_

Checks metadata
Verify(Certg, K,yp,nt)
Verify(Cert,n., Koub root)

7
7

~

{Certg, Cert;:}

* Kpriv,B
* CertB= { Kpub,Br Sign(Kpub’B, Kpriv,lnt)i e }

96

How the hierarchy works

Ex. Server has certificate from Intermediate CA,;

| (TLS handshake))
Kpub,Root 2 B hI?s.- .
{Certg, Cert;:} Priv, ,
* CertB ={K,pp SIigN(Koup s Korivint)s -+ }
/CIient's workflow: I
e Checks metadata v

* Verify(Certg, K,,p nt) v
i Verify(certmtr Kpub,ROOt)

_ Y

=> To verify integrity, need to verify certificates back to
(trusted) root certificate

=> OK if verification passes and metadata correct: £

97

A Not Secure | https://nd.Isacc.net

Your connection is not private

Attackers might be trying to steal your information from nd.lsacc.net (for example,
passwords, messages, or credit cards). Learn more

NET::ERR_CERT_COMMON_NAME_INVALID

Advanced Back to safety

Most common TLS errors you might see

« Common name (eg. yourbank.com) invalid
 Self-signed
* Certificate expired

When is it okay to click "proceed"? What happens if you do?

)

Most common TLS errors you might see

« Common name invalid
 Self-signed
* Certificate expired

When is it okay to click "proceed"? What happens if you do?

4 I
=> Might occur it webserver configured improperly, or if you're

setting up a system

_ i

100

Rogue Certificates?

In 2011, DigiNotar, a Dutch root certificate authority, was
compromised

* The attacker created rogue certificates for popular domains like
google.com and yahoo.com

 DigiNotar was distrusted by browsers and filed for bankruptcy
« See the by Fox-IT

101

http://www.rijksoverheid.nl/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1.html

In 2017, Google questioned the certificate issuance policies and
practices of Symantec

Google’'s Chrome would start distrusting Symantec’s certificates
unless certain remediation steps were taken

See between Ryan Sleevi (Chromium team) and
Symantec

The matter was settled with

102

https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-woodshed-for-mis-issuing-30000-https-certs/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/

TLS decryption

What happens when an organization wants to view TLS traffic on its network?

103

Example: https://www.alOnetworks.com/products/thunder-ssli/

---Decrypt Zone--;

Security Device

—J

Client A10 Thunder SSLi

®

Internet Remote Server

Encrypted traffic from the client is intercepted
by Thunder SSLi and decrypted.

Thunder SSLi sends the decrypted traffic to a
security device, which inspects it in clear-text.

The security device, after inspection, sends the
traffic back to Thunder SSLi, which intercepts
and re-encrypts it.

Thunder SSLi sends the re-encrypted traffic to
the server.

The server processes the request and sends
an encrypted response to Thunder SSLi.

Thunder SSLi decrypts the response traffic and
forwards it to the same security device for
inspection.

Thunder SSLi receives the traffic from the
security device, re-encrypts it and sends it to
the client.

https://www.a10networks.com/products/thunder-ssli/

PKls, TLS, and HTTPS

105

The story so far

» Asymmetric crypto: each entity gets a key in two parts
— Koy Private key, kept secret
— Kou: Public key, shared with everyone

 Can provide important security properties

— Authentication/Integrity: A signs message with Koriv,a, @nyone with Koub,a €anN verify message
came from A
— Confidentiality: A encrypts message to B with K, 5, B can decrypt with K, g

« But: how do we know if we can trust a public key?

106

Public Key Infrastructure (PKI)

Public key crypto is very powerful ...
* ... but the realities of tying public keys to real world identities turn out to be quite

hard

« PKI: Trust distribution mechanism
— Authentication via

« Note: Trust doesn’t mean someone is honest, just that they are who they say they
are...

107

Managing Trust

» The most solid level of trust is rooted in our direct personal experience
— E.g., Alice’s trust that Bob is who they say they are
— Clearly doesn't scale to a global network!

* In its absence, we rely on delegation
— Alice trusts Bob's identity because Charlie attests to it
— and Alice trusts Charlie

108

Managing Trust, con't

* Trust is not particularly transitive
— Should Alice trust Bob because she trusts Charlie ...
— ... and Charlie vouches for Donna ...
— ... and Donna says Eve is trustworthy ...
— ... and Eve vouches for Bob's identity?

« Two models of delegating trust

— Rely on your set of friends and their friends
« “"Web of trust” -- e.g., PGP

— Rely on trusted, well-known authorities (and those they trust...)
e “Trusted root” -- e.g., HTTPS

109

PKI Conceptual framework

Public keys managed by Certificate Authorities (CAs)
 Everyone knows public key for some root CAs

 To publish a public key for entity X, root CA R signs X's public key
— What this means: CA agrees that this is X's public key
— Creates a Certificate: {K,,x, signature, metadata}

 Given signature, anyone who knows the root can verify

— Delegates trust of Kpub,X to CA
— If you trust the CA, you now trust X

* Root CAs: pre-installed in your system/browser

110

What's in a ce

—-
G /r*/’///'('(// e

5 r

ol

Trust
Details
Subject Name
Country or Region
Organization
Organizational Unit
Common Name

Issuer Name
Country or Region
Organization
Organizational Unit
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not Valid After

Public Key Info
Algorithm
Parameters
Public Key
Exponent

Key Size

Key Usage

DigiCert Assured ID Root CA

DigiCert Assured ID Root CA

Root certificate authority

Expires: Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time
@ This certificate is valid

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

OC E7 EO E5 17 D8 46 FE 8F E5 60 FC 1B FO 30 39
3

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
None

Thursday, November 9, 2006 at 19:00:00 Eastern Standard Time
Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time

RSA Encryption (1.2.840.113549.1.1.1)
None

256 bytes : AD OE 15 CEE4 4380 5C ...
65537

2,048 bits

Verify

Keychain Access

All Items Passwords Secure Notes My Certificates Keys Certificates

oot

>
(6 Jerlifieate

Amazon Root CA 1
Root certificate authority
Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time

@ This certificate is valid

4
)
3
o

1 5 5

1 7 1 KD

A

AAA Certificate Services

AC RAIZ FNMT-RCM

Actalis Authentication Root CA
AffirmTrust Commercial

AffirmTrust Networking
AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Amazon Root CA 2

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Certum CA

Certum Trusted Network CA

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

Date Modified

Expires

Dec 31, 2028 at 18:59:59
Dec 31, 2029 at 19:00:00
Sep 22, 2030 at 07:22:02
Dec 31, 2030 at 09:06:06
Dec 31, 2030 at 09:08:24
Dec 31, 2040 at 09:10:36
Dec 31, 2040 at 09:20:24
Jan 16, 2038 at 19:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
Jun 5, 2033 at 13:45:38
Feb 9, 2035 at 16:40:36
Apr 30, 2039 at 14:10:09
Apr 30, 2039 at 14:19:06
Feb 9, 2025 at 19:18:14
Dec 31, 2030 at 18:59:59
Dec 31, 2030 at 03:38:15
Dec 17, 2030 at 18:59:59
May 12, 2025 at 19:59:00
Oct 26, 2040 at 04:38:03
Oct 26, 2040 at 04:28:58
Jul 19, 2042 at 05:06:56
Jul 19, 2042 at 05:15:30
Jun 29, 2027 at 11:13:05
Sep 17, 2028 at 04:28:59
Oct 21, 2033 at 05:17:18
Jan 14, 2038 at 19:00:00
Jan 14, 2038 at 19:00:00
Jul 4, 2031 at 13:20:04
Jun 11, 2027 at 06:46:39
Dec 31, 2029 at 07:07:37

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

PKI hierarchy

* In reality, hierarchy of trust
* Root CAs sign certificates for Intermediate CAs

 Intermediate CAs sign certificates for general users/sites
The further up the hierarchy, the more protections it needs

« CA's often use Hardware Security Modules (HSMs), other physical protections...
* What happens it a CA is compromised?

113

PKI Example

114

Inside the Server's Certificate

* Common name: Domain name for cert (e.g., amazon.com)
« Amazon'’s public key

A bunch of auxiliary info (physical address, type of cert, expiration time)

URL to revocation center to check for revoked keys
« Name of certificate’s signatory (who signed it)

A public-key signature of a hash of all this
— Constructed using the signatory’s private RSA key

115

Validating Amazon’s Identity

« Browser retrieves cert belonging to the signatory

If it can’t find the cert, then warns the user that site has not been verified
— And may ask whether to continue
— Could still proceed, just without authentication

» Browser uses public key in signatory’s cert to decrypt signature
— Compares with its own hash of Amazon’s cert

« Assuming signature matches, now have high confidence it's indeed Amazon
— ... assuming signatory is trustworthy

117

HTTPS Connection (SSL/TLS), con't

Amazon
 Browser constructs a random

session key K

* Browser encrypts K using Amazon's
public key K

* Browser sends E(K, KA,,) to server

» Browser displays &

* All subsequent communication agreed K
encrypted w/ symmetric cipher /
using key K

— E.g., client can authenticate using a
password

K)

118

When does this break down?

* TLS is hard to implement
* Need to trust the CAs

« Users need to understand warnings

119

As of July 2021, the Trustworthy Internet Movement estimated the ratio of websites that are vulnerable to TLS attacks.[”]

Survey of the TLS vulnerabilities of the most popular websites

Security
Attacks
Insecure Depends

0.1% <0.1%

Renegotiation attack) -
support insecure renegotiation support both

0.4%

6.5%
RC4 attacks support RC4 suites used with modern ° .
support some RC4 suites

browsers

. >0.0%
TLS Compression (CRIME attack) N/A
vulnerable

>0.0%
Heartbleed N/A
vulnerable

0.2%
0.1%

ChangeCipherSpec injection attack) vulnerable, not
vulnerable and exploitable ,
exploitable

POODLE attack against TLS 0.1% 0.1%
(Original POODLE against SSL 3.0 is not e vulnerable, not
vulnerable and exploitable ,
included) exploitable

6.6%
Protocol downgrade ° N/A
Downgrade defence not supported

Secure

99.2%
support secure renegotiation

98.1%
no support

N/A

N/A

98.5%
not vulnerable

99.8%
not vulnerable

72.3%
Downgrade defence
supported

1.2%
unknown

0.2%
unknown

21.0%
unknown

Wikipedia table, source: https://www.ssllabs.com/ssligulse/

Keychain Access

All Items Passwords Secure Notes My Certificates Keys Certificates

oot

>
(6 Jerlifieate

Amazon Root CA 1
Root certificate authority
Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time

@ This certificate is valid

4
)
3
o

1 5 5

1 7 1 KD

A

AAA Certificate Services

AC RAIZ FNMT-RCM

Actalis Authentication Root CA
AffirmTrust Commercial

AffirmTrust Networking
AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Amazon Root CA 2

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Certum CA

Certum Trusted Network CA

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

Date Modified

Expires

Dec 31, 2028 at 18:59:59
Dec 31, 2029 at 19:00:00
Sep 22, 2030 at 07:22:02
Dec 31, 2030 at 09:06:06
Dec 31, 2030 at 09:08:24
Dec 31, 2040 at 09:10:36
Dec 31, 2040 at 09:20:24
Jan 16, 2038 at 19:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
Jun 5, 2033 at 13:45:38
Feb 9, 2035 at 16:40:36
Apr 30, 2039 at 14:10:09
Apr 30, 2039 at 14:19:06
Feb 9, 2025 at 19:18:14
Dec 31, 2030 at 18:59:59
Dec 31, 2030 at 03:38:15
Dec 17, 2030 at 18:59:59
May 12, 2025 at 19:59:00
Oct 26, 2040 at 04:38:03
Oct 26, 2040 at 04:28:58
Jul 19, 2042 at 05:06:56
Jul 19, 2042 at 05:15:30
Jun 29, 2027 at 11:13:05
Sep 17, 2028 at 04:28:59
Oct 21, 2033 at 05:17:18
Jan 14, 2038 at 19:00:00
Jan 14, 2038 at 19:00:00
Jul 4, 2031 at 13:20:04
Jun 11, 2027 at 06:46:39
Dec 31, 2029 at 07:07:37

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

Digital Signatures

» Suppose Alice has published public key K¢
* |f she wishes to prove who she is, she can send a message x
encrypted with her key Kp

— Therefore: anyone w/ public key Kg can recover x, verity that Alice
must have sent the message

— |t provides a
— Alice can't deny later deny it =

122

RSA Crypto & Signatures, con't

. e 3

Alice's
private key
DFCD3454
BBEA788A

Bob

| will Verify o'ﬂ'
pay $500

(Decrypt) Alice's
public key

123

Summary of Our Crypto Toolkit

* If we can securely distribute a key, then

— Symmetric ciphers (e.g., AES) offer fast, presumably strong
confidentiality

» Public key cryptography can make this easier (can share
public keys anywhere)
— But not as computationally efficient

— Use public key crypto to exchange , which is used for
symmetric encryption

— And not guaranteed secure
* but major result if not

124

Summary of Our Crypto Toolkit, con’t

 Cryptographically strong hash functions provide major building block for integrity
(e.g., SHA-256)

— As well as providing concise digests
— And providing a way to prove you know something (e.g., passwords) without revealing it (

— But: worrisome recent results regarding their strength (MD5, SHA1)

« Public key also gives us
— Including sender non-repudiation

 Turns out there's a crypto trick based on similar algorithms that allows two parties
who don’t know each other’s public key to securely negotiate a secret key even in

the presence of eavesdroppers
— Look up: Diffie-Hellman Key Exchange

125

