CSCI-1680
More on TLS
How to (try) to be anonymous

Nick DeMarinis

1
Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

Final project: now available
— Team form: due TODAY (12/2) by 5pm EST
— Brief proposal: due Friday 12/6 (no late days!)

Final homework (short): out now, due Mon, 12/9
Short SRC component: due 12/16 (same as final project)

* Most office hours end Friday, some updates this week

— After 12/6: | will still have hours, but schedule will differ => see calendar

Warmup

When establishing a TLS connection, can (easily) set up a shared key for both parties
to communicate confidentially.

Shared key: k

pne)

(...TLS handshake, Key exchange...)
{Kpub,B, ...}

— 1 I ——

Encrypted channel using k

— N

Kpub,B, Kpriv,B

DCC: -

Warmup

When establishing a TLS connection, can (easily) set up a shared key for both parties
to communicate confidentially.
yﬂJLWK\COﬂ

- (...TLS handshake, Key exchange...) -

> KEub,B, Kpriv,B

{Kpub,B, ...}

Shared key: k

~¥
— 1 _
her end is actually

Encrypted channel using k Authenticity: make sure the party on the o
your bank

Integrity: making sure data gets to the othg¢r side unchanged
(crypto primitives)

But if you want to connect to a site like your bank securely, what else is missing?

What do we need besides confidentiality?

Problem: How can we trust K K pubis
Your Bank's public k key?

14

Problem: distributing trust

How can we trust Kpub is Your Bank's public key?
Problem: Trust distribution

« Hard to verity real-world identities

* Hard to scale to the whole Internet

Different protocols have different mechanisms
=> TLS (and others): Public Key Infrastructure (PKI) with certificates

15

PKl: The main idea @
D TRVSTED
/ j,}fﬂﬂﬂ/f}'” K

Public keys managed by Certificate Authorities (CAs) pub,X
» Everyone knows public key for some root CAs 555 (maybe)
— Pre-installed into browser/OS $ L/
“ VERYONE
Jj
 If X wants a public key, request from CA AN Kpug, e 4 CA

— CA validates X's identity => if OK signs X's public key -
— Generates certificate 1
» Client can verify K, x from CA's signature: _
Verify(K,up ca Cert) => True/False > " Slgn(f_‘ﬂ%' Koupo -)

Cert = {K,,» x, metadata, s}

(*See note on Let's Encrypt at end)
[=> Delegates trust for individual entity to a more trusted authority

S g

17

18

What's in a certificate?

/

(Public key of entity (eg. yourbank.com) /6)905 l/ ALU S
« Common name: DNS name of server (yourbank.com) lemep
« Contact info for organization Z?OK A ucr ﬁ/ C}A

v VA Orry DATES OF MAKES

Cent /6 /WAL

o- ~ /F WY JETAOATA
Acreren!

19

What's in a certificate?

 Public key of entity (eg. yourbank.com)

« Common name: DNS name of server (yourbank.com)

« Contact info for organization

* Validity dates (start date, expire date)

* URL of revocation center to check if key has been revoked

S1epep

By CA

All of this is part of the data signed by the CA
=> Critical to check all parts during TLS startup!

20

—
¢ /f‘/’////?'l///'

Hoot

ol

Trust
Details
Subject Name
Country or Region
Organization
Organizational Unit
Common Name

Issuer Name
Country or Region
Organization
Organizational Unit
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not Valid After

Public Key Info
Algorithm
Parameters
Public Key
Exponent

Key Size

Key Usage

DigiCert Assured ID Root CA

DigiCert Assured ID Root CA

Root certificate authority

Expires: Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time
@ This certificate is valid

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

OC E7 EO E517 D8 46 FE 8F E5 60 FC 1B FO 30 39
3

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
None

Thursday, November 9, 2006 at 19:00:00 Eastern Standard Time
Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time

RSA Encryption (1.2.840.113549.1.1.1)
None

256 bytes : AD OE 15 CE F4 4253 5C ...
65537

2,048 bits

Verify

Given Cert =
{Kpub,bank, s, ..}

Browser will;

Verify(s, Kpub,CA)

Keychain Access

All tems Passwords Secure Notes My Certificates Keys

Neet

=
@ //*/’///f(w//'

Amazon Root CA 1
Root certificate authority

@ This certificate is valid

Name

sl

AAA Certificate Services

AC RAIZ FNMT-RCM

Actalis Authentication Root CA
AffirmTrust Commercial
AffirmTrust Networking
AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Certificates

Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate

certificate

Date Modified

Expires

Dec 31, 2028 at 18:59:59
Dec 31, 2029 at 19:00:00
Sep 22, 2030 at 07:22:02
Dec 31, 2030 at 09:06:06
Dec 31, 2030 at 09:08:24
Dec 31, 2040 at 09:10:36
Dec 31, 2040 at 09:20:24
Jan 16, 2038 at 19:00:00

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

0 5 v o o v o o

Amazon Root CA 2

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Certum CA

Certum Trusted Network CA

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
Jun 5, 2033 at 13:45:38
Feb 9, 2035 at 16:40:36
Apr 30, 2039 at 14:10:09
Apr 30, 2039 at 14:19:06
Feb 9, 2025 at 19:18:14
Dec 31, 2030 at 18:59:59
Dec 31, 2030 at 03:38:15
Dec 17, 2030 at 18:59:59
May 12, 2025 at 19:59:00
Oct 26, 2040 at 04:38:03
Oct 26, 2040 at 04:28:58
Jul 19, 2042 at 05:06:56
Jul 19, 2042 at 05:15:30
Jun 29, 2027 at 11:13:05
Sep 17, 2028 at 04:28:59
Oct 21, 2033 at 05:17:18
Jan 14, 2038 at 19:00:00
Jan 14, 2038 at 19:00:00
Jul 4, 2031 at 13:20:04
Jun 11, 2027 at 06:46:39
Dec 31, 2029 at 07:07:37

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

Q: are there other methods of delegating_ trust?

- Web of trust: small group of parties that sign each other’s
keys
=> Have a threshold on how many signatures you need to be

“trusted”
=> Doesn’t scale to entire internet, but exists for small

communities (esp. open-source software projects)

- Trust on first use (TOFU)
- ON first connection, ask user if they trust the public key
(y/n)
- If user says yes, trust key for all time
- If public key changes later, something sketchy is
happening => trust error
=> SSH (by default)

Also: PKI comes up in other ways outside of TLS:
- DNSSEC has a similar hierarchy (root zone ~= trusted CA)
- Similar certificates used for secure email (S/MIME) or some
other related authentication standards

Certificate Viewer: www.cs.brown.edu
General Details

Certificate Hierarchy

» USERTrust RSA Certification Authc:r_iﬁ ﬂ‘”w B)/

< InCommon RSA Server CA
u_j,mmo BY
www.cs.brown.ed
Certificate Fields (\

Issuer

Seaven_

 Validity
Verification process: need

to verify signature back to
trusted root that lives on

system
v Subject Public Key Info

Not Before
Not After

Subject

Subject Public Key Algorithm

Subject's Public Key

Field Value

CN = www.cs.brown.edu
O = Brown University
ST = Rhode Island
Cc=US

23

2

®

(G Jerlificale

Trust
Details
Subject Name
Country or Region
Organization
Organizational Unit
Common Name

Issuer Name
Country or Region
Organization
Organizational Unit
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not Valid After

Public Key Info
Algorithm
Parameters
Public Key
Exponent

Key Size

Key Usage

DigiCert Assured ID Root CA

Root certificate authority

Expires: Sunday, November 9, 2031 at 19:00:00-Ecstern Standard Time
@ This certificate is valid

DigiCert Assured ID Root CA

Note the dates: this cert is for a root CA, so it’s
valid for a super long time, 15 years!

us
DigiCert Inc

- This is because root CAs are very hard to change.
www.digicert.com . i . .
pigicert assured 1o [f @ root CA expires, everything signed by it is

invalid

us
DigiCert Inc . g . .
wdigcercom VIOST SEIVEY Certificates (|§, certs installed on
pigicert Assured I @VErage webservers) expire after 1 year, or less

OCE7EOE517 D8 .

3

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
None

Thursday, November 9, 2006 at 19:00:00 Eastern Standard Time
Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time

RSA Encryption (1.2.840.113549.1.1.1)
None

256 bytes : AD OE 15 CE E4 43 80 5C ...
65537

2,048 bits

Verify

PKI hierarchy

In reality, PKI creates a hierarchy of trust:

* Root CAs: k,, stored in virtually every browser, OS

— Private keys protected by most stringent security measures
(software, hardware, physical)

* Intermediate CAs: k,, signed by root CA
— Sign certificates for general use (ie, regular websites)
— Doesn't require same protections as root

Coor0 16V
 General-use certificates: for a specitic webserver/ /(”/C’/Jff/

[What happens if a root is compromised? } -

How the hierarchy works

Ex. Server has certificate from Intermediate CA.; U;ﬁd

Kpub,Root

(TLS handshake)

/

+0F L&/\fi‘)

B has:

>

le

U

{Certg, Cert)+}
= =

* Kpriv,B
* CertB={K,ypp SigN(Ksuppr Koriyint)s - }

29

How the hierarchy works

Ex. Server has certificate from Intermediate CA.;

(TLS handshake))
Kpub,Root | 2 B hI?S'. 5
{Certg, Cert) i} priv,)
* CertB={K,ypp SigN(Ksuppr Koriyint)s - }
/Client's workflow: I
* Checks metadata v

° Verify(CertB, I<pub,lnt) 7
° Verify(certlnt; Kpub,Root)

o i

=> To verify integrity, need to verify certificates back
to (trusted) root certificate

=> OK if verification passes and metadata correct: &

31

A Not Secure | hitps://nd.Isacc.net

Your connection is not private

Attackers might be trying to steal your information from nd.lsacc.net (for example,
passwords, messages, or credit cards). Learn more

NET::ERR_CERT_COMMON_NAME_INVALID

Advanced Back to safety

Most common TLS errors you might see

« Common name (eg. yourbank.com) invalid

» Certificate expired =2 2,4; -—~//.,< ton Seven. cETS
« Bad chain of trust (can’t verify back to trusted root)

=> Usually a sign of something sketchy, or something wrong with the webserver

[When is it okay to click “proceed”? What happens if you do? }

)

=> Might occur if webserver configured properly, or if you're setting up
a system, but not okay for your bank (or Brown ...)

35

Most common TLS errors you might see

« Common name (eg. yourbank.com) invalid
* Certificate expired
« Bad chain of trust (can't verify to trusted root cert)

« "“Certificate is self-signed”???
Kpub,X
CertX = {Kpub,X, Sign(Kpub,X, Kpriv,X)}

Self-signed: certificate that signs itself
=> Common for demo services
=> Root CAs are self-signed (that's okay because we trust them)

36

Warmup

(1) What happens if attacker obtains Kpriv,B?

@What about Kpriv,CA?

I<pub,B

l

CA

- |

>

{CertB, ...}

Kpriv,B, Keriv,B
S Slgl I(K riv,CAr {K ub,Br - })
P P

R

Certg = {Kpub,Bl metadata, s}

Can forge messages, impersonate B
Can create arbitrary signatures for
anything you want => can
impersonate ANY website

41

Rogue Certificates?

* In 2011, DigiNotar, a Dutch root certificate authority, was
compromised

» The attacker created rogue certificates for popular domains like
google.com and yahoo.com

 DigiNotar was distrusted by browsers and filed for bankruptcy
* See the by Fox-IT

42

http://www.rijksoverheid.nl/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1.html

In 2017, Google questioned the certificate issuance policies and
practices of Symantec

Google’s Chrome would start distrusting Symantec’s certificates
unless certain remediation steps were taken

See between Ryan Sleevi (Chromium team) and
Symantec

The matter was settled with

43

https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-woodshed-for-mis-issuing-30000-https-certs/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/

TLS “decryption”

What happens when an organization wants to view TLS traffic on its network?

D
O < —

\/ é\/—_7> o 7(//41}0&\’/4*5
% <j > TLS wmcstoe [> ﬁ
: FLA 1077 B
CAia, L i - Canr;

IR Mpecwmp — L

TLS interceptors: intentional traffic interception/spoofing--how does the
browser still think it's valid???

44

TLS decryption

What happens when an organization wants to view TLS traffic on its network?

718 NMDSIKE
7{ SR > L5 INTEQ o 1= =
r

7 fLA}/WE%T]?Am,/ b’ZEE,;\—

CM‘%TEM Ceror_

JUCEDS CA For JprELCEPYIL

JNSTALCED , _) : :
Some corporate networks want to view TLS traffic to ensure compliance with policy

=> Forward all traffic through TLS interceptor: client does TLS handshake with interceptor, then
interceptor connects to actual server, allowing it to see all data
=> When A does the TLS handshake with the interceptor, it gets back a fake certificate from the
interceptor, not B. How does this pass verification? Company needs to install a CA on A

=> This is intentional traffic interception/spoofing—thoughts? 62

Example: https://www.alOnetweorks.com/products/thunder-ssli/

---Decrypt Zone:- -

Security Device

Client A10 Thunder SSLi

®

Internet Remote Server

Encrypted traffic from the client is intercepted
by Thunder SSLi and decrypted.

Thunder SSLi sends the decrypted traffic to a
security device, which inspects it in clear-text.

The security device, after inspection, sends the
traffic back to Thunder SSLi, which intercepts
and re-encrypts it.

Thunder SSLi sends the re-encrypted traffic to
the server.

The server processes the request and sends
an encrypted response to Thunder SSLi.

Thunder SSLi decrypts the response traffic and
forwards it to the same security device for
inspection.

Thunder SSLi receives the traffic from the
security device, re-encrypts it and sends it to
the client.

https://www.a10networks.com/products/thunder-ssli/

Larger problem: how do we trust that CAs are issuing certificates
properly?

Certificate Transparency (RFC9162, 2021): Recent effort to provide open
standard to monitor how certificates are issued

- Verifiable, append-only logs of all certificates issued (built using Merkle
trees)

- Browsers, CAs, other interested parties can maintain logs

Modern browser vendors are starting to require that CAs use Certificate
Transparency in order to be included as a trusted CA

Example CT monitor: https://crt.sh

More interesting notes on TLS that we didn't get a chance to
cover....

Q: If private key is compromised, can attacker decrypt data?

Not if TLS connection uses forward secrecy

= Cannot recover session key if server private key leaked

= Once optional, now required by TLS 1.3 (2018)

12

Q: If private key is compromised, can attacker decrypt data?

Not if TLS connection uses forward secrecy

= Cannot recover session key if server private key leaked

= Once optional, now required by TLS 1.3 (2018)

13

Website protocol support (May 2024)

Protocol Website Securityl92193]
version support!°?]

SSL 2.0 0.1% Insecure

SSL 3.0 1.4% Insecure!%4!
TLS 1.0 27.9% Deprecated(20[211[22]

TLS 1.1 30.0% Deprecated!201211(22]

TLS1.2 99.9% | Depends on cipher" ' and client mitigations" 2!

TLS 1.3 70.1% Secure

In practice, TLS 1.3 rollout delayed by many broken TLS implementations
(eg. in-network middleboxes/proxies) ...

Website protocol support (May 2024)

Protocol Website Securityl92193]
version support!°?]

SSL 2.0 0.1% Insecure

SSL 3.0 1.4% Insecurel94!
TLS 1.0 27.9% Deprecated!20121](22]

TLS 1.1 30.0% Deprecated!201211(22]

TLS1.2 99.9% | Depends on cipher" ' and client mitigations" 2!

TLS 1.3 70.1% Secure

In practice, TLS 1.3 rollout delayed by many broken TLS implementations
(eg. in-network middleboxes/proxies) ...

[Remember how we said don't propagate buggy behavior in TCP?

Website protocol support (Sept 2023)

Protocol Website Securityl®71E8]
version | support®’]
SSL 2.0 0.2% Insecure

SSL 3.0 1.7% Insecurel8®!
TLS 1.0 30.1% Deprecated!2011211122]

TLS 1.1 32.5% Deprecated!2011211122]

TLS1.2 99.9% | Depends on cipher" ' and client mitigations!" 2!

TLS 1.3 64.8% Secure

Corpuee!

In general, implementing security protocols is hard to get right

=> TLS libraries are very critical and need lots of oversight/auditing

=> Servers (and clients) need to be updated with latest standards/fixes

19

As of July 2021, the Trustworthy Internet Movement estimated the ratio of websites that are vulnerable to TLS attacks.[71]

Survey of the TLS vulnerabilities of the most popular websites

Security
Attacks
Insecure Depends

0.1% <0.1%

Renegotiation attack . L
support insecure renegotiation support both

0.4%
RC4 attacks support RC4 suites used with modern

6.5%

support some RC4 suites
browsers

. >0.0%
TLS Compression (CRIME attack) | bi N/A
vulnerable

>0.0%
Heartbleed N/A
vulnerable

0.2%
0.1%

ChangeCipherSpec injection attack . vulnerable, not
vulnerable and exploitable .
exploitable

POODLE attack against TLS 0.1% 0.1%
(Original POODLE against SSL 3.0 is not P . vulnerable, not
vulnerable and exploitable .
included) exploitable

6.6%
Protocol downgrade ° N/A
Downgrade defence not supported

Secure

99.2%
support secure renegotiation

93.1%
no support

N/A

98.5%
not vulnerable

99.8%
not vulnerable

72.3%
Downgrade defence
supported

1.2%
unknown

0.2%
unknown

21.0%
unknown

Wikipedia table, source: https://www.ssllabs.com/ss|-gulse/

/QP&/NW/% STVEF . Chchmé + T1C

(lovD Menpep.

CACHE
co T8 L CGHEP-
M Cowwetiions . ow
/ BAKEwD—~MAYBE TLS

j Dviest qerwg A
Prery / cact?

How does caching work with TLS?
- Client makes a TLS connection to some endpoint at
cloud provider (cache, etc), not the backend server
- From there, the cache can see the client’s request,
then respond with cached data or query backend
server

=> Cache needs to have certificate

=> Traffic is decrypted in the cloud provider (may or
may not be what you want)

?@w Dot A A ALDATE A
Centigichre LEQUESTT

Before signing a certificate, a CA should check the requestor’s identity in some
way. Two ways to do this:

- Organization validation (less common): manually verify contact info, in-
person, etc.

- Domain validation (most common): verify that the requestor is in control of
the domain name where they are requesting the certificate

How domain validation S:

1. Admin of some sit .coﬁgﬁmniﬁé’te

2. CA issues challenge with random value X, asks requestor (admin, etc) to make
it viewable on their site. Examples:
A. eg. Add a DNS record on site.com containing challenge value (TXT record)
B. Make challenge available on website (ACME protocol)

3. The CA checks for challenge value (DNS lookup for site, etc.) => finds
challenge X’

4. If X ==X, it means that the requestor can prove control of the site

Eg. Let’s Encrypt (2014): Free CA that issues certificates using this method => now
extremely common, issues >1M certificates per day

Problem: what if attacker can hijack DNS? Could spoof validation process with
spoofed responses, BGP hijacking, ...

One solution: need to verify challenge from multiple vantage points (ASes) to avoid
querying from one bad server/path

