
CSCI-1680
More on TLS

How to (try) to be anonymous
Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti
1

Administrivia

• Final project: now available
– Team form: due TODAY (12/2) by 5pm EST
– Brief proposal: due Friday 12/6 (no late days!)

• Final homework (short): out now, due Mon, 12/9
• Short SRC component: due 12/16 (same as final project)

• Most office hours end Friday, some updates this week
– After 12/6: I will still have hours, but schedule will differ => see calendar

3

8

Warmup

Your bank

Kpub,B, Kpriv,B

You
(...TLS handshake, Key exchange...)

Shared key: k k

Encrypted channel using k

When establishing a TLS connection, can (easily) set up a shared key for both parties
to communicate confidentially.

{Kpub,B, …}

ENCH DEC

a

9

Warmup

Your bank

Kpub,B, Kpriv,B

You

!?

(...TLS handshake, Key exchange...)

Shared key: k k

Encrypted channel using k

When establishing a TLS connection, can (easily) set up a shared key for both parties
to communicate confidentially.

{Kpub,B, …}

But if you want to connect to a site like your bank securely, what else is missing?
What do we need besides confidentiality?

YOUMDANK.COM

e
Authenticity: make sure the party on the other end is actually
your bank

Integrity: making sure data gets to the other side unchanged
(crypto primitives)

Problem: How can we trust K_pub is
Your Bank's public key?

14

Problem: distributing trust

How can we trust Kpub is Your Bank's public key?
Problem: Trust distribution
• Hard to verify real-world identities
• Hard to scale to the whole Internet

Different protocols have different mechanisms
 => TLS (and others): Public Key Infrastructure (PKI) with certificates

15

17

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

• If X wants a public key, request from CA
– CA validates X's identity => if OK signs X's public key
– Generates certificate

• Client can verify Kpub,X from CA's signature:
 Verify(Kpub,CA Cert) => True/False

CA

Kpub,X

$$$ (maybe)

s = Sign(Kpriv,CA, {Kpub,X, ... })

Cert = {Kpub,X, metadata, s}

=> Delegates trust for individual entity to a more trusted authority

X

TRUSTINRITT

EVERYONE

(*See note on Let's Encrypt at end)

18

What's in a certificate?

• Public key of entity (eg. yourbank.com)
• Common name: DNS name of server (yourbank.com)
• Contact info for organization

19

KPOD
ALL SIGNED
BYCA

VALIDITY DATES CERT IS INVALID
IFANYMETADATA
ALTERED

What's in a certificate?

• Public key of entity (eg. yourbank.com)
• Common name: DNS name of server (yourbank.com)
• Contact info for organization
• Validity dates (start date, expire date)
• URL of revocation center to check if key has been revoked

20

All of this is part of the data signed by the CA
=> Critical to check all parts during TLS startup!

15165Pa

What’s in a certificate?

21

I
ETF

0

Given Cert =

{Kpub,bank, s, ..}

Browser will:

Verify(s, Kpub,CA)

22

I

Q: are there other methods of delegating trust?

 - Web of trust: small group of parties that sign each other’s
keys
 => Have a threshold on how many signatures you need to be
“trusted”
 => Doesn’t scale to entire internet, but exists for small
communities (esp. open-source software projects)

 - Trust on first use (TOFU)
 - ON first connection, ask user if they trust the public key
(y/n)
 - If user says yes, trust key for all time
 - If public key changes later, something sketchy is
happening => trust error
 => SSH (by default)

Also: PKI comes up in other ways outside of TLS:
 - DNSSEC has a similar hierarchy (root zone ~= trusted CA)
 - Similar certificates used for secure email (S/MIME) or some
 other related authentication standards

23

ROOTCA

1 E
SERVER

Verification process: need
to verify signature back to
trusted root that lives on
system

What’s in a certificate?

49

Note the dates: this cert is for a root CA, so it’s
valid for a super long time, 15 years!

This is because root CAs are very hard to change.
If a root CA expires, everything signed by it is
invalid

Most server certificates (ie, certs installed on
average webservers) expire after 1 year, or less

PKI hierarchy

In reality, PKI creates a hierarchy of trust:
• Root CAs: kpub stored in virtually every browser, OS
– Private keys protected by most stringent security measures

(software, hardware, physical)

• Intermediate CAs: kpub signed by root CA
– Sign certificates for general use (ie, regular websites)
– Doesn't require same protections as root

• General-use certificates: for a specific webserver

27
What happens if a root is compromised?

COULD SIGN

ANYCERT

How the hierarchy works

29

B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

STACK
OFCONTS

s

How the hierarchy works

31

B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

Client's workflow:
• Checks metadata ✅
• Verify(CertB, Kpub,Int) ✅
• Verify(CertInt, Kpub,Root) ✅ => To verify integrity, need to verify certificates back

to (trusted) root certificate
=> OK if verification passes and metadata correct: !

32

Most common TLS errors you might see

• Common name (eg. yourbank.com) invalid
• Certificate expired
• Bad chain of trust (can’t verify back to trusted root)

=> Usually a sign of something sketchy, or something wrong with the webserver

35

When is it okay to click “proceed”? What happens if you do?

3m05 YR FOR SERVER
CERTS

=> Might occur if webserver configured properly, or if you're setting up
a system, but not okay for your bank (or Brown ...)

Most common TLS errors you might see

• Common name (eg. yourbank.com) invalid
• Certificate expired
• Bad chain of trust (can’t verify to trusted root cert)
• “Certificate is self-signed”???

36

Kpub,X

CertX = {Kpub,X, Sign(Kpub,X, Kpriv,X)}

Self-signed: certificate that signs itself

 => Common for demo services

 => Root CAs are self-signed (that's okay because we trust them)

41

Warmup

bank.comYou

Kpriv,B, Kpriv,B

CA

Kpub,B

s = Sign(Kpriv,CA, {Kpub,B, ... })

CertB = {Kpub,B, metadata, s}{CertB, …}

What happens if attacker obtains Kpriv,B?
What about Kpriv,CA?

8
Can forge messages, impersonate B
1.
Can create arbitrary signatures for 2.
anything you want => can
impersonate ANY website

Rogue Certificates?

• In 2011, DigiNotar, a Dutch root certificate authority, was
compromised

• The attacker created rogue certificates for popular domains like
google.com and yahoo.com

• DigiNotar was distrusted by browsers and filed for bankruptcy
• See the incident investigation report by Fox-IT

42

http://www.rijksoverheid.nl/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1.html

• In 2017, Google questioned the certificate issuance policies and
practices of Symantec

• Google’s Chrome would start distrusting Symantec’s certificates
unless certain remediation steps were taken

• See back and forth between Ryan Sleevi (Chromium team) and
Symantec

• The matter was settled with DigiCert acquiring Symantec’s certificate
business

43

https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-woodshed-for-mis-issuing-30000-https-certs/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/

TLS “decryption”

What happens when an organization wants to view TLS traffic on its network?

44

SDHAE
TLS INTERCEPTOR β

PLAINTEXT
Catntorcorton CatyCtfu

TLS interceptors: intentional traffic interception/spoofing--how does the
browser still think it's valid???

TLS decryption

What happens when an organization wants to view TLS traffic on its network?

62

TLS HANDSHAKE
The INTERCEPTOR

TE B
PLAINTEXT DATA

CERTINTERCEPTOR

NEEDLEA FOR INTERCEPTOR
Some corporate networks want to view TLS traffic to ensure compliance with policy

=> Forward all traffic through TLS interceptor: client does TLS handshake with interceptor, then
interceptor connects to actual server, allowing it to see all data

 => When A does the TLS handshake with the interceptor, it gets back a fake certificate from the
interceptor, not B. How does this pass verification? Company needs to install a CA on A

 => This is intentional traffic interception/spoofing—thoughts?

63

Example: https://www.a10networks.com/products/thunder-ssli/

https://www.a10networks.com/products/thunder-ssli/

Larger problem: how do we trust that CAs are issuing certificates
properly?

Certificate Transparency (RFC9162, 2021): Recent effort to provide open
standard to monitor how certificates are issued

 - Verifiable, append-only logs of all certificates issued (built using Merkle
trees)

 - Browsers, CAs, other interested parties can maintain logs

Modern browser vendors are starting to require that CAs use Certificate
Transparency in order to be included as a trusted CA

Example CT monitor: https://crt.sh

More interesting notes on TLS that we didn't get a chance to
cover....

12

Not if TLS connection uses forward secrecy
ÞCannot recover session key if server private key leaked

ÞOnce optional, now required by TLS 1.3 (2018)

Q: If private key is compromised, can attacker decrypt data?

13

Not if TLS connection uses forward secrecy
ÞCannot recover session key if server private key leaked

ÞOnce optional, now required by TLS 1.3 (2018)

Q: If private key is compromised, can attacker decrypt data?

14

In practice, TLS 1.3 rollout delayed by many broken TLS implementations
 (eg. in-network middleboxes/proxies) …

16

In practice, TLS 1.3 rollout delayed by many broken TLS implementations
 (eg. in-network middleboxes/proxies) …

Remember how we said don’t propagate buggy behavior in TCP?

17

7

COMPARE

19

In general, implementing security protocols is hard to get right

=> TLS libraries are very critical and need lots of oversight/auditing

=> Servers (and clients) need to be updated with latest standards/fixes

Server

Wikipedia table, source: https://www.ssllabs.com/ssl-pulse/20

ADDITIONAL STUFF CACHING TLS

CLOUD PROVIDER

cant

DEVICH ACTING A
SITEXPROXY CACHE

How does caching work with TLS?

 - Client makes a TLS connection to some endpoint at
cloud provider (cache, etc), not the backend server

 - From there, the cache can see the client’s request,
then respond with cached data or query backend
server

 => Cache needs to have certificate

 => Traffic is decrypted in the cloud provider (may or
may not be what you want)

HOW DOES A CA VALIDATE A
CERTIFICATE REQUEST

It
CHALLENGE

Before signing a certificate, a CA should check the requestor’s identity in some
way. Two ways to do this:

 - Organization validation (less common): manually verify contact info, in-
person, etc.

 - Domain validation (most common): verify that the requestor is in control of
the domain name where they are requesting the certificate

Problem: what if attacker can hijack DNS? Could spoof validation process with
spoofed responses, BGP hijacking, …

One solution: need to verify challenge from multiple vantage points (ASes) to avoid
querying from one bad server/path

How domain validation works:

Admin of some site site.com asks CA for certificate
1.
CA issues challenge with random value X, asks requestor (admin, etc) to make 2.
it viewable on their site. Examples:

eg. Add a DNS record on site.com containing challenge value (TXT record)
A.
Make challenge available on website (ACME protocol)
B.

The CA checks for challenge value (DNS lookup for site, etc.) => finds 3.
challenge X’

If X == X’, it means that the requestor can prove control of the site
4.

Eg. Let’s Encrypt (2014): Free CA that issues certificates using this method => now
extremely common, issues >1M certificates per day

