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Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti
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Administrivia

• Final project:  now available
– Team form: due TODAY (12/2) by 5pm EST
– Brief proposal:  due Friday 12/6 (no late days!)

• Final homework (short):  out now, due Mon, 12/9
• Short SRC component:  due 12/16 (same as final project)

• Most office hours end Friday, some updates this week
– After 12/6: I will still have hours, but schedule will differ => see calendar
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Warmup

Your bank

Kpub,B, Kpriv,B

You
(...TLS handshake, Key exchange...)

Shared key: k k

Encrypted channel using k

When establishing a TLS connection, can (easily) set up a shared key for both parties 
to communicate confidentially.  

{Kpub,B, …}
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Warmup

Your bank

Kpub,B, Kpriv,B

You

!?

(...TLS handshake, Key exchange...)

Shared key: k k

Encrypted channel using k

When establishing a TLS connection, can (easily) set up a shared key for both parties 
to communicate confidentially.  

{Kpub,B, …}

But if you want to connect to a site like your bank securely, what else is missing? 
What do we need besides confidentiality? 








































YOUMDANK.COM

e
Authenticity:  make sure the party on the other end is actually 
your bank

Integrity:  making sure data gets to the other side unchanged 
(crypto primitives)



Problem:  How can we trust K_pub is 
Your Bank's public key?
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Problem:  distributing trust

How can we trust Kpub is Your Bank's public key?
Problem:  Trust distribution
• Hard to verify real-world identities
• Hard to scale to the whole Internet

Different protocols have different mechanisms
 => TLS (and others):  Public Key Infrastructure (PKI) with certificates
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PKI:  The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

• If X wants a public key, request from CA
– CA validates X's identity => if OK signs X's public key
– Generates certificate

• Client can verify Kpub,X from CA's signature:
 Verify(Kpub,CA Cert) => True/False

CA

Kpub,X

$$$ (maybe)

s = Sign(Kpriv,CA, {Kpub,X, ... })

Cert = {Kpub,X, metadata, s}

=> Delegates trust for individual entity to a more trusted authority

X








































TRUSTINRITT

EVERYONE

(*See note on Let's Encrypt at end)
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What's in a certificate?

• Public key of entity (eg. yourbank.com)
• Common name: DNS name of server (yourbank.com)
• Contact info for organization
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KPOD
ALL SIGNED
BYCA

VALIDITY DATES CERT IS INVALID
IFANYMETADATA
ALTERED



What's in a certificate?

• Public key of entity (eg. yourbank.com)
• Common name:  DNS name of server (yourbank.com)
• Contact info for organization
• Validity dates (start date, expire date)
• URL of revocation center to check if key has been revoked
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All of this is part of the data signed by the CA
=> Critical to check all parts during TLS startup!
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What’s in a certificate?
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Given Cert = 

{Kpub,bank, s, ..}



Browser will:

Verify(s, Kpub,CA)
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Q:  are there other methods of delegating trust? 
 
  - Web of trust:  small group of parties that sign each other’s 
keys 
     => Have a threshold on how many signatures you need to be 
“trusted” 
      => Doesn’t scale to entire internet, but exists for small 
communities (esp. open-source software projects) 
 
 
   - Trust on first use (TOFU) 
       - ON first connection, ask user if they trust the public key 
(y/n) 
        - If user says yes, trust key for all time 
        - If public key changes later, something sketchy is 
happening => trust error 
        => SSH (by default) 
 
 
Also:  PKI comes up in other ways outside of TLS: 
  - DNSSEC has a similar hierarchy (root zone ~= trusted CA) 
  - Similar certificates used for secure email (S/MIME) or some 
    other related authentication standards
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ROOTCA

1 E
SERVER

Verification process:  need 
to verify signature back to 
trusted root that lives on 
system



What’s in a certificate?
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Note the dates:  this cert is for a root CA, so it’s 
valid for a super long time, 15 years!  



This is because root CAs are very hard to change.  
If a root CA expires, everything signed by it is 
invalid



Most server certificates (ie, certs installed on 
average webservers) expire after 1 year, or less



PKI hierarchy

In reality, PKI creates a hierarchy of trust:
• Root CAs: kpub stored in virtually every browser, OS
– Private keys protected by most stringent security measures 

(software, hardware, physical)

• Intermediate CAs: kpub signed by root CA
– Sign certificates for general use (ie, regular websites)
– Doesn't require same protections as root

• General-use certificates:  for a specific webserver
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What happens if a root is compromised?
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How the hierarchy works
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B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }
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How the hierarchy works
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B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

Client's workflow:
• Checks metadata           ✅
• Verify(CertB, Kpub,Int)      ✅
• Verify(CertInt, Kpub,Root)  ✅ => To verify integrity, need to verify certificates back 

to (trusted) root certificate
=> OK if verification passes and metadata correct: !
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Most common TLS errors you might see

• Common name (eg. yourbank.com) invalid
• Certificate expired
• Bad chain of trust (can’t verify back to trusted root)

=> Usually a sign of something sketchy, or something wrong with the webserver 
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When is it okay to click “proceed”?  What happens if you do?








































3m05 YR FOR SERVER
CERTS

=> Might occur if webserver configured properly, or if you're setting up 
a system, but not okay for your bank (or Brown ...)



Most common TLS errors you might see

• Common name (eg. yourbank.com) invalid
• Certificate expired
• Bad chain of trust (can’t verify to trusted root cert)
• “Certificate is self-signed”???
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Kpub,X

CertX = {Kpub,X, Sign(Kpub,X, Kpriv,X)}



Self-signed:  certificate that signs itself

 => Common for demo services

 => Root CAs are self-signed (that's okay because we trust them)
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Warmup

bank.comYou

Kpriv,B, Kpriv,B

CA

Kpub,B

s = Sign(Kpriv,CA, {Kpub,B, ... })

CertB = {Kpub,B, metadata, s}{CertB, …}

What happens if attacker obtains Kpriv,B?  
What about Kpriv,CA?
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Can forge messages, impersonate B
1.
Can create arbitrary signatures for 2.
anything you want => can 
impersonate ANY website



Rogue Certificates?

• In 2011, DigiNotar, a Dutch root certificate authority, was 
compromised

• The attacker created rogue certificates for popular domains like 
google.com and yahoo.com

• DigiNotar was distrusted by browsers and filed for bankruptcy
• See the incident investigation report by Fox-IT
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http://www.rijksoverheid.nl/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1.html


• In 2017, Google questioned the certificate issuance policies and 
practices of Symantec

• Google’s Chrome would start distrusting Symantec’s certificates 
unless certain remediation steps were taken

• See back and forth between Ryan Sleevi (Chromium team) and 
Symantec

• The matter was settled with DigiCert acquiring Symantec’s certificate 
business
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https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-woodshed-for-mis-issuing-30000-https-certs/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/


TLS “decryption”

What happens when an organization wants to view TLS traffic on its network?
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SDHAE
TLS INTERCEPTOR β

PLAINTEXT
Catntorcorton CatyCtfu

TLS interceptors:  intentional traffic interception/spoofing--how does the 
browser still think it's valid???



TLS decryption

What happens when an organization wants to view TLS traffic on its network?
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TLS HANDSHAKE
The INTERCEPTOR

TE B
PLAINTEXT DATA

CERTINTERCEPTOR

NEEDLEA FOR INTERCEPTOR
Some corporate networks want to view TLS traffic to ensure compliance with policy

=> Forward all traffic through TLS interceptor:  client does TLS handshake with interceptor, then 
interceptor connects to actual server, allowing it to see all data

 => When A does the TLS handshake with the interceptor, it gets back a fake certificate from the 
interceptor, not B.  How does this pass verification?  Company needs to install a CA on A  

      => This is intentional traffic interception/spoofing—thoughts? 
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Example:  https://www.a10networks.com/products/thunder-ssli/ 







































https://www.a10networks.com/products/thunder-ssli/































































Larger problem:  how do we trust that CAs are issuing certificates 
properly?  
 
Certificate Transparency (RFC9162, 2021):  Recent effort to provide open 
standard to monitor how certificates are issued

   - Verifiable, append-only logs of all certificates issued (built using Merkle 
trees)

   - Browsers, CAs, other interested parties can maintain logs



Modern browser vendors are starting to require that CAs use Certificate 
Transparency in order to be included as a trusted CA



Example CT monitor:  https://crt.sh 






























































































More interesting notes on TLS that we didn't get a chance to 
cover....
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Not if TLS connection uses forward secrecy
ÞCannot recover session key if server private key leaked

ÞOnce optional, now required by TLS 1.3 (2018)

Q:  If private key is compromised, can attacker decrypt data?
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Not if TLS connection uses forward secrecy
ÞCannot recover session key if server private key leaked

ÞOnce optional, now required by TLS 1.3 (2018)

Q:  If private key is compromised, can attacker decrypt data?
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In practice, TLS 1.3 rollout delayed by many broken TLS implementations
 (eg. in-network middleboxes/proxies) …










































16

In practice, TLS 1.3 rollout delayed by many broken TLS implementations
 (eg. in-network middleboxes/proxies) …

Remember how we said don’t propagate buggy behavior in TCP?
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COMPARE
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In general, implementing security protocols is hard to get right

=> TLS libraries are very critical and need lots of oversight/auditing

=> Servers (and clients) need to be updated with latest standards/fixes










































Server 

Wikipedia table, source:  https://www.ssllabs.com/ssl-pulse/20





































































































































ADDITIONAL STUFF CACHING TLS

CLOUD PROVIDER

cant

DEVICH ACTING A
SITEXPROXY CACHE

How does caching work with TLS?  

 - Client makes a TLS connection to some endpoint at 
cloud provider (cache, etc), not the backend server

 - From there, the cache can see the client’s request, 
then respond with cached data or query backend 
server

    => Cache needs to have certificate

    => Traffic is decrypted in the cloud provider (may or 
may not be what you want) 
























































HOW DOES A CA VALIDATE A
CERTIFICATE REQUEST

It
CHALLENGE

Before signing a certificate, a CA should check the requestor’s identity in some 
way.  Two ways to do this:  

  - Organization validation (less common):  manually verify contact info, in-
person, etc.

  - Domain validation (most common):  verify that the requestor is in control of 
the domain name where they are requesting the certificate

Problem:  what if attacker can hijack DNS?   Could spoof validation process with 
spoofed responses, BGP hijacking, …

One solution:  need to verify challenge from multiple vantage points (ASes) to avoid 
querying from one bad server/path 

How domain validation works:

Admin of some site site.com asks CA for certificate
1.
CA issues challenge with random value X, asks requestor (admin, etc) to make 2.
it viewable on their site.  Examples: 


eg. Add a DNS record on site.com containing challenge value (TXT record)
A.
Make challenge available on website (ACME protocol)
B.

The CA checks for challenge value (DNS lookup for site, etc.) => finds 3.
challenge X’

If X == X’, it means that the requestor can prove control of the site
4.



Eg. Let’s Encrypt (2014):  Free CA that issues certificates using this method => now 
extremely common, issues >1M certificates per day
























































































