
IP Project Gearup I

Overview

• Motivation and overview
• “The IP stack”
• “The virtual network”
• How to get started for the milestone
• Any questions you have

IP+TCP Projects: the goal

Goal: implement core parts of an OS networking stack
• Learn how core Internet protocols work
• Learn how OS implements networking
• Learn how to work and debug at multiple layers of

abstraction

Networking and software design!

A “network stack”

Example: a network

7

1.2.1.2

1.2.1.3

1.2.1.200

1.2.2.105

1.2.2.100

1.2.1.1 1.2.2.1

IF1 IF2

All of these implement IP!

Our “virtual” network

We’ll ”simulate” a network, in userspace
• Build two programs: a “vhost” and “vrouter” that use your IP

stack

• Networking: your programs communicate via UDP sockets
(more on this later)

R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

“doc-example” network

An example virtual network

INTERFACES

Network is made of nodes: hosts or routers

Hosts have one interface

Routers have >1 interface

R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

“doc-example” network

Node ::= “host” or “router”
All nodes connect via interfaces
ÞHosts have exactly one interface
ÞRouters have multiple interfaces
ÞEach interface is a UDP socket (more on this later)

An example virtual network

Configuring the nodes

All nodes (vhost, vrouter) take in a configuration file (a ”.lnx
file”) to tell it about the network:
• How many interfaces, their “virtual” IP addresses, etc.

Can run your nodes in different topologies, depending on the
config files

See ”Sample networks” in docs page

R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

“doc-example” network

An example virtual network

R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

r1-hosts
10.0.0.0/24

r1-r2
10.1.0.0/24

r2-hosts
10.2.0.0/24

Example: subnets

Network divided into subnets:
- Each subnet has an IP prefix
- All nodes on same subnet are neighbors
- Nodes can always send to their neighbors (more on this later)
=> Goal: routers need to forward packets between networks

I

R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

r1-hosts
10.0.0.0/24

r1-r2
10.1.0.0/24

r2-hosts
10.2.0.0/24

Example: interfaces

Virtual IP: 10.0.0.1
Network: 10.0.0.0/24
UDP: bind on 127.0.0.1:5000

Config for H1’s if0
Every interface has:

 - "Virtual" IP: lives only within our network, must be
within this subnet

 - UDP port to send/recv packets on that interface

 - Node knows the UDP ports of its neighbors

R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

doc-example

r1-hosts
10.0.0.0/24

r1-r2
10.1.0.0/24

r2-hosts
10.2.0.0/24

:5002
10.1.0.1

:5001
10.0.0.2

:5000
10.0.0.1

:5003
10.1.0.2

:5004
10.2.0.1

:5005
10.2.0.2

:5006
10.2.0.3

R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

Example: forwarding tables

r1-hosts
10.0.0.0/24

r1-r2
10.1.0.0/24

r2-hosts
10.2.0.0/24

:5002
10.1.0.1

:5001
10.0.0.2

:5000
10.0.0.1

:5003
10.1.0.2

:5004
10.2.0.1

:5005
10.2.0.2

:5006
10.2.0.3

r1:

> lr
T Prefix Next hop Cost
L 10.0.0.0/24 LOCAL:if0 0
L 10.1.0.0/24 LOCAL:if1 0
R 10.2.0.0/24 10.1.0.2 1

h1:
 > lr
T Prefix Next hop Cost
L 10.0.0.0/24 LOCAL:if0 0
S 0.0.0.0/0 10.0.0.2 0

Each node has its own forwarding table

 - Some info known at startup (from lnx config)

 - Routers learn more info from other routers over
time (via RIP, more on this later

=> You get to figure out how to build and use the
forwarding table!

IP project: Goals

• Forwarding: send packets between nodes

• Routing: Routers implement a routing protocol (RIP) to tell
other routers about their networks

Goal: All nodes can communicate with all other nodes!

At startup, routers only know about their local
networks

 => Routing algorithm: tell other routers about your
routes => build global picture of whole network

IP project: Goals

• Forwarding: send packets between nodes

• Routing: Routers implement a routing protocol (RIP) to tell
other routers about their networks

• Start of your “IP stack”: API you can extend for other
“applications” later

Goal: All nodes can communicate with all other nodes!

e

How configuration works

Two config files:
Network definition file (doc-example.json):

– Defines the subnets, how they’re connected
– One per network
– You won’t interact with it much

lnx file (per-device config):
– Tells a specific vhost, vrouter what it knows about the network
– We give you the parser

1
ONE FILE PH NODE

R1H1 if0

h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1
route 0.0.0.0/0 via 10.0.0.2

Virtual IP: 10.0.0.1
Network: 10.0.0.0/24
UDP: bind on 127.0.0.1:5000

Config for if0

Interface: has a virtual IP, network, “link-layer” UDP port

R1H1 if0

h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1
route 0.0.0.0/0 via 10.0.0.2

Virtual IP: 10.0.0.1
Network: 10.0.0.0/24
UDP: bind on 127.0.0.1:5000
neighbors: { 10.0.0.2 => 127.0.0.1:5001 }

Config for if0

neighbors: { 10.0.0.2 => 127.0.0.1:5001 }

:5001:5000

Each interface has a list of neighbors: mapping of IPs to UDP ports

INPUT
ON
STARTUP

R1H1 if0

h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1
route 0.0.0.0/0 via 10.0.0.2

Virtual IP: 10.0.0.1
Network: 10.0.0.0/24
UDP: bind on 127.0.0.1:5000
neighbors: { 10.0.0.2 => 127.0.0.1:5001 }

Config for if0

neighbors: { 10.0.0.2 => 127.0.0.1:5001 }

:5001:5000

=> H1 can reach 10.0.0.2
by sending to UDP port 5001

R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

doc-example

r1-hosts
10.0.0.0/24

r1-r2
10.1.0.0/24

r2-hosts
10.2.0.0/24

:5002
10.1.0.1

:5001
10.0.0.2

:5000
10.0.0.1

:5003
10.1.0.2

:5004
10.2.0.1

:5005
10.2.0.2

:5006
10.2.0.3

The Milestone

• Start by running the reference to get a feel for it
 => Setup guide online by Friday (when teams are sent out)

• For Friday (10/4): focus on sketching your high-level design
for your IP stack
– No need to have working code yet, just some serious plans/sketches
– We’ll ask you a few design questions, each graded on completion

UDP Socket
. . .

“Link layer”
 (Interfaces)

“Network layer”
IP Forwarding

if0

UDP Socket

if1

IP API

What you should be focusing on first
Focus on thinking about how you'll set up the components of your IP and link layers (what data
structures, threads, etc.)

 => Link layer: one UDP socket per interface

 => IP layer: what will your forwarding table look like, how will forwarding logic use it?

 => What will your API look like for higher layers? (next page)

Your high-level API

Some key functions you want to expose for higher layers:
 => You get to decide how this works!

Start up your IP stack
Initialize(<config struct from lnx file>)

Send a packet to some host
SendIP(dest ip, protocolNum, []byte)

”Call this function when you receiving a packet”
RegisterRecvHandler(protocolNum, callbackFunc)

We suggest something like the following
three components (here in pseudocode)

UDP Socket
. . .

“Link layer”
 (Interfaces)

“Network layer”
IP Forwarding

if0

UDP Socket

if1

IP API

What comes next

If Ers RIP

I I

These components will use your API in order to send/recv packets!

(Routers only, communicates with
other routers, more on this in a
few lectures)

("send" command in REPL: just
send a string, print it out)

Essential resources

All resources on IP/TCP docs site
• The handout: high level spec, grading
• Getting started guide (online soon)
• Specifications (skim now, mostly for post-milestone)

– Lnx file structure
– RIP specification
– vhost/vrouter REPL commands

• Many more testing resources for later!

https://brown-csci1680.github.io/iptcp-docs

Implementation notes for now

• Most languages have types for IP addresses with methods
you can use
– In Go, you should use netip.Addr

• Okay to use libraries for things like data structures, parsing

Consider your software organization--you're going to be working with this code for a while,
and collaborating with another person.

Consider what you learned from Snowcast--good software design is going to help you!
(Perhaps don't put everything in a single file, avoid magic numbers, ...)

Advice

• A lot of this project is about design. If you try to rush it, you
will have problems.
– Start early!

• Use pair programming, especially at the beginning

• You got this!

