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Overview

• Motivation and overview
• “The IP stack”
• “The virtual network”
• How to get started for the milestone
• Any questions you have



IP+TCP Projects:  the goal

Goal:  implement core parts of an OS networking stack
• Learn how core Internet protocols work
• Learn how OS implements networking
• Learn how to work and debug at multiple layers of 

abstraction

Networking and software design!  



A “network stack”



Example:  a network
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All of these implement IP!



Our “virtual” network

We’ll ”simulate” a network, in userspace
• Build two programs: a “vhost” and “vrouter” that use your IP 

stack

• Networking:  your programs communicate via UDP sockets 
(more on this later)
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“doc-example” network

An example virtual network

INTERFACES

Network is made of nodes:  hosts or routers

Hosts have one interface

Routers have  >1 interface
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Node ::= “host” or “router”
All nodes connect via interfaces
ÞHosts have exactly one interface
ÞRouters have multiple interfaces
ÞEach interface is a UDP socket (more on this later)

An example virtual network



Configuring the nodes

All nodes (vhost, vrouter) take in a configuration file (a ”.lnx 
file”) to tell it about the network:
• How many interfaces, their “virtual” IP addresses, etc.

Can run your nodes in different topologies, depending on the 
config files

See ”Sample networks” in docs page
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Example:  subnets

Network divided into subnets:
- Each subnet has an IP prefix
- All nodes on same subnet are neighbors
- Nodes can always send to their neighbors (more on this later)
=> Goal:  routers need to forward packets between networks

I
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Example:  interfaces

Virtual IP:  10.0.0.1
Network:  10.0.0.0/24
UDP:  bind on 127.0.0.1:5000

Config for H1’s  if0
Every interface has:

 - "Virtual" IP:  lives only within our network, must be 
within this subnet

 - UDP port to send/recv packets on that interface

 - Node knows the UDP ports of its neighbors
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Example:  forwarding tables

r1-hosts
10.0.0.0/24

r1-r2
10.1.0.0/24

r2-hosts
10.2.0.0/24

:5002
10.1.0.1

:5001
10.0.0.2

:5000
10.0.0.1

:5003
10.1.0.2

:5004
10.2.0.1

:5005
10.2.0.2

:5006
10.2.0.3

r1:

> lr
T    Prefix  Next hop Cost
L  10.0.0.0/24  LOCAL:if0   0
L  10.1.0.0/24  LOCAL:if1   0
R  10.2.0.0/24  10.1.0.2   1

h1:
 > lr
T    Prefix  Next hop Cost
L  10.0.0.0/24  LOCAL:if0   0
S   0.0.0.0/0  10.0.0.2   0

Each node has its own forwarding table

 - Some info known at startup (from lnx config)

 - Routers learn more info from other routers over 
time (via RIP, more on this later

=> You get to figure out how to build and use the 
forwarding table!



IP project:  Goals

• Forwarding:  send packets between nodes

• Routing:  Routers implement a routing protocol (RIP) to tell 
other routers about their networks

Goal: All nodes can communicate with all other nodes! 

At startup, routers only know about their local 
networks 

 => Routing algorithm:  tell other routers about your 
routes => build global picture of whole network



IP project:  Goals

• Forwarding:  send packets between nodes

• Routing:  Routers implement a routing protocol (RIP) to tell 
other routers about their networks

• Start of your “IP stack”:  API you can extend for other 
“applications” later

Goal: All nodes can communicate with all other nodes! 

e



How configuration works

Two config files:
Network definition file (doc-example.json):  

– Defines the subnets, how they’re connected
– One per network
– You won’t interact with it much

lnx file (per-device config):  
– Tells a specific vhost, vrouter what it knows about the network
– We give you the parser

1
ONE FILE PH NODE



R1H1 if0

h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1
route 0.0.0.0/0 via 10.0.0.2

Virtual IP:  10.0.0.1
Network:  10.0.0.0/24
UDP:  bind on 127.0.0.1:5000

Config for if0

Interface:  has a virtual IP, network, “link-layer” UDP port



R1H1 if0

h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1
route 0.0.0.0/0 via 10.0.0.2

Virtual IP:  10.0.0.1
Network:  10.0.0.0/24
UDP:  bind on 127.0.0.1:5000
neighbors:  { 10.0.0.2 => 127.0.0.1:5001 }

Config for if0

neighbors:  { 10.0.0.2 => 127.0.0.1:5001 }

:5001:5000

Each interface has a list of neighbors:  mapping of IPs to UDP ports

INPUT
ON
STARTUP



R1H1 if0

h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1
route 0.0.0.0/0 via 10.0.0.2

Virtual IP:  10.0.0.1
Network:  10.0.0.0/24
UDP:  bind on 127.0.0.1:5000
neighbors:  { 10.0.0.2 => 127.0.0.1:5001 }

Config for if0

neighbors:  { 10.0.0.2 => 127.0.0.1:5001 }

:5001:5000

=> H1 can reach 10.0.0.2 
by sending to UDP port 5001
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The Milestone

• Start by running the reference to get a feel for it
    => Setup guide online by Friday (when teams are sent out)

• For Friday (10/4):  focus on sketching your high-level design 
for your IP stack
– No need to have working code yet, just some serious plans/sketches
– We’ll ask you a few design questions, each graded on completion



UDP Socket
. . .

“Link layer”
 (Interfaces)

“Network layer”
IP Forwarding

if0

UDP Socket
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IP API

What you should be focusing on first
Focus on thinking about how you'll set up the components of your IP and link layers (what data 
structures, threads, etc.)

 => Link layer:  one UDP socket per interface

 => IP layer:  what will your forwarding table look like, how will forwarding logic use it?

 => What will your API look like for higher layers?  (next page)



Your high-level API

Some key functions you want to expose for higher layers:
 => You get to decide how this works!  

# Start up your IP stack
Initialize(<config struct from lnx file>)

# Send a packet to some host
SendIP(dest ip, protocolNum, []byte)

# ”Call this function when you receiving a packet”
RegisterRecvHandler(protocolNum, callbackFunc)

We suggest something like the following 
three components  (here in pseudocode)



UDP Socket
. . .

“Link layer”
 (Interfaces)

“Network layer”
IP Forwarding

if0

UDP Socket

if1

IP API

What comes next

If Ers RIP

I I

These components will use your API in order to send/recv packets! 

(Routers only, communicates with 
other routers, more on this in a 
few lectures)

("send" command in REPL:  just 
send a string, print it out)



Essential resources

All resources on IP/TCP docs site
• The handout:  high level spec, grading
• Getting started guide (online soon)
• Specifications (skim now, mostly for post-milestone)

– Lnx file structure
– RIP specification
– vhost/vrouter REPL commands

• Many more testing resources for later!

https://brown-csci1680.github.io/iptcp-docs


Implementation notes for now

• Most languages have types for IP addresses with methods 
you can use
– In Go, you should use netip.Addr

• Okay to use libraries for things like data structures, parsing

Consider your software organization--you're going to be working with this code for a while, 
and collaborating with another person. 
  
Consider what you learned from Snowcast--good software design is going to help you!  
(Perhaps don't put everything in a single file, avoid magic numbers, ...)



Advice

• A lot of this project is about design.  If you try to rush it, you 
will have problems.
– Start early!

• Use pair programming, especially at the beginning

• You got this!




