IP Project Gearup |l

F2{

Overview

* How to think about the link-layer/forwarding
* How to send packets / test with Wireshark

* |Implementation notes
* Any questions you have

The Big Picture

User commands

SUR I _______________ . Other commands

{ \ (up, down, I*, ..)

Upper layers g TCP

(next project, hosts only)

“Network layer”

“Link layer”
(Interfaces)

What you should be focusing on first

“Link layer”
(Interfaces)

[How to receive packets on interfaces, send them back out}

How does the link-layer work?

What does it mean to forward vs. send on an interface?

Fouren_.
?Z\}ng/ > lr

lr Prefix Next hop Cost
10.2.0.0/24 10.1.0.2—™ 1
10.0.0.0/24 LOCAL:1f0 — @
10.1.0.0/24 LOCAL:1fl—~ O

>

T Prefix Next hop Cost
L 10.0.0.0/24 LOCAL:1f0Q 0
S 0.0.0.0/0 10.0.0.2 0

—rr—>x -

Key resource:

IP-TCP docs

Q Search IP-TCP docs Main website Ed

IP Handout

Geting started guide Implementation start guide

Impl tati id . . . - N .
S kinthtimiie v 1 This guide demonstrates the most important things to keep in mind as you writing your

Specifications implementation, including how to think about sending IP packets on our virtual network, and super
Toolslandiresources important debugging techniques for checking your work.

Sample networks
When to use: You should do this tutorial as soon as you start your actual implementation

(usually, right after your milestone meeting). Once you have an idea of what you need to
Changelog build, this guide can help you get started with the most important details on implementation and
testing (eg. with Wireshark). You're also welcome to start it earlier, if you want a more hands-on
demo, but some of the concepts involved might not be too clear until after Lecture 8 (Tuesday,
October 1).

FAQs

For a live demo of many of the features here, see Gearup II.

This tutorial will cover:

1. How to send well-formed virtual IP packets encapsulated in UDP packets

=> Tutorial on how to set up sockets, what link-layer should look like
Do this when you're ready to start implementing. Find it :

https://brown-csci1680.github.io/iptcp-docs/ip-impl-start-guide/
https://brown-csci1680.github.io/iptcp-docs/ip-impl-start-guide/

doc-example

—ui

i\

|

1 7] 1 17 > lr
Node ::= “host” or “router T Prefix Next hop Cost
All nodes connect via interfaces R 10.2.0.0/24 10.1.0.2 1
— Hosts have exactly one interface L 10.0.0.0/24 LOCAL:ifo 0
L 10.1.0.0/24 LOCAL:ifl]

= Routers have multiple interfaces

o T ———

doc-example

————————————————————————————

’/
~

r1-hosts
10.0.0.0/24

—— -
—— e —
—— -

r1-r2 N/
10.1.0.0/24

P

/"All topologies have multiple subnets

o

Each subnet has its own IP prefix
Each interface is connected to one subnet
Nodes on the same subnet are neighbors
=> Nodes always know how to send packets to their neighbors

~

r2-hosts Y
10.2.0.0/24

-—----------------_’

L
N
S

e o ——————————— -

Example:
- H2, H3, and R2's if1 are neighbors

%

- H1 and R1's ifO are neighbors

Interface: has a virtual IP, network, “link-layer” UDP port

hl.1lnx

interface 1f0 10.0.0.1/24 127.0.0.1:5000 # to network rl-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via 1f0 # rl

route 0.0.0.0/0 via 10.0.0.2

Virtual IP: 10.0.0.1
Network: 10.0.0.0/24
UDP: bind on 127.0.0.1:5000

hl.1lnx
interface 1f0 10.0.0.1/24 127.0.0.1:5000 # to network rl-hosts

neighbor 10.0.0.2 at 127.0.0.1:5001 via if0@ # rl
////;7 route 0.0.0.0/0 via 10.0.0.2

One "neighbor" directive

for each node on this subnet
Each interface has a set of

/5000 neighbors
-------------------------- Can always send directly to your
neighbors (ie, always know the
UDP ports for your neighbors)

Virtual IP: 10.0.0.1
Network: 10.0.0.0/24
UDP: bind on 127.0.0.1:5000

Each interface has a list of neighbors: mapping of IPs to UDP ports
=> Like an ARP table, but always known ahead of time

hl.1lnx

interface 1f0 10.0.0.1/24 127.0.0.1:5000 # to network rl-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via 1f@ # rl

route 0.0.0.0/0 via 10.0.0.2

/000

Virtual IP: 10.0.0.1
Network: 10.0.0.0/24
UDP: bind on 127.0.0.1:5000

So if we want to send from H1 to R1,
we need to send something to UDP port 5001 => but what?

How to think about encapsulation

» Each interface: thread/goroutine/etc listening on a UDP port

 Each packet contains an IP header + whatever message
content

LOMAT LE SEWT 00D (ocp KT,

Lo R LOP W)
P_‘

o2 ppee VPO,
IP Header P deaee

16 31 bit

0 4 8
Identification m Frgment offset
TTL Header checksum

Source address

) Destination address _
——

ions LOHEJ'K
Opt & oA WET "

éﬁl

Hew 70)T ERPRET TRE
yjm;q O THE 346146r

DP-in-IP example

Complete code example for building an IP header, adding it
to a packet, and sending it via UDP

— Also computes/validates checksum!

Let's break down how this works...

To send some data

 Build an IP header

— Fill in all header fields as appropriate (source, dest IP, etc.)
— Compute the checksum

« UDP Packet: IP header + data you want to send

S——

+ Send packet via socket for that interface

—

mﬁﬁ_xz A

What would it look like to send from h1 -> h3?

lllllllllllllllllllllllllllllllllllllll

4
4
4
1
]
1
1
1
1
i
“ <t N
2N =
2O o
1 2o S
NN T
1 N .
e)
P
1
1
1
1
1
1
\
\
\
\
III'
\\\
V4
/4
]
1
1
1
1
1 <
1 N
1 ~
I N O
[.
T O
I .
P
1 o
1 —
1
1
1
1
1
\
\
\
N e
IR
U4
V4
/4
1 1
]]
1 1
1 1
1 1
1 1
1 1
1 1
“ S “
1 ()] 1
S~
mw.O i
N 1
P <2 “
I i 01 1
1) 3 1
L= SoS |
| 23 |
“ =
1 1
1]
\ 1
\Y U4
// \\

|||||||||||||||||||||||||||

T ————————————— -

o T ———

[What happens if h2 sends to h3?

——————————————————————————————

r1-hosts
10.0.0.0/24

:5000 :5001
10.0.0.1 10.0.0.2

~So -

DEST Jp.2.6,3 =LAl =2 S

N\ ',/ r1-r2 ~\\\ /// r2-hosts e
10.1.0.0/24 10.2.0.0/24

—— -

—— -

- —— — —
~

——

/110101 10.1.0.2 |

—————————————————————————

(o W
\,

-

CAW Sewp PIRECTLY
70 w2/

10.2.0.1

10.2.0.2
:5002 :5003 .;5004

6

~ ’

N------------------—’

”_—————————————————————————-\\ ”_————————————————————-\ "‘— ——————————————————————————

N\

.'/ r1-hosts r1-r2 \“ ,// rZ—thzstsp ‘/ \\
10.0.0.0/24 (6.).0-6/Y . f0.2.0-5/2
| N /5005 |
| b 10.2.0.2 ;
| 5000 % 5002 OE |
\ 10.0.0.1 10002 /% 10.1.0.1 10.1.0.2; | :
IE SENOIK Frork W3 i

pesT FWD TAGLE /UE/@NE”‘LS pﬂL:;\)
‘0.2, 0.2 coc Ay (9 2,02 =7 2% ” 10203 d
== — o 2 /\(/Ué’/gﬂﬂoﬂ/
[°0.0.(/0. 2.0] [0.2.0. :>-'9'0‘9L/\ So 4w StV

ERAYCT DIRECTLY TO NosT.

FORGARDING CTERX

C oupen. BackeT IR pestmiisn 1P D

If destination IP D matches one of this node’s
assigned IPs |
=> Packet is for this node => Send “up” (more on this later)

Otherwise, check forwarding table to look for a match
(If multiple matches, take the most specific prefix (lecture 7, 9)

If the result is a local route (ie, maps to some ifX)

=> Look up UDP port forD.in neighbors table for ifX (SEND ’0/£5CTL)/>

Send packet to this port £6. A ’37\13
If the result is not a local route (ie, has next hop IP
=> Need to send packet to G instead:
Look up G.in forwarding table SEMD YA
=> maps to some local route on some interface ifY éﬂT[«jwjl)/)
L.ook up UDP port for G'in ifY’s neighbor’s tablg (6. N2>P2D-e.

Send packet to this port

\/

CNooCIvs JEAT 1P
DESTIN AT,

/%» 72 can Pl

Ok pNopES RO DieFefenT THNES WITH
PACKLTS:
nerocor Ny

Norrd .)[Eovrees
— TET LiksrC (o — TEXT PAUESL (0)
— TP (6) — 21 P AcksiC (2%)

~

=2 Lok F A WwDE” (e Bick Fuwe)
For PAKET AED OV ppprpcoc Mompee

Z C6/8TE/L M@&’L (/Uu/f} Sone [Wg)

/

Do 708 A SGHawr — 7L
/P STAck. 0 CAe Dk fowc

NEN) ReCliime A /AckeT Lo/
THIC —~— fHoracoc.

How to table lookup? D*7=)p.057> Look-

Dest IP == 10.0.0.5, where to send packet?

rl: hl:
> lr
> 1r — T Prefix Next hop Cost
T Prefix Next hop Cost XL 10.0.0.0/24 LOCAL.if0 @
L 10.0.0.0/24 LOCAL:if@ © S _0.0.0.0/0 10.0.0.2 0
‘ L 10.1.0.0/24 LOCAL:ifT @ - —
R 10.2.0.0/24 10.1.0.2 1
S

* You can decide how to store the table
* Need to find the most specific matching prefix

* Use built-in datatypes to heIB youl!
Go: prefix.Contains() (netip.Prefix)

How to think about routing?

lllllllllllllllllllllllllllllllllllllll

4
4
/4
1
]
1
1
1
1
i
S = 3t
“E/ 4 o
mh_O. = o
AN 1
e)
P
1
1
1
1
1
1
\
\
\
\
/lll
\\\
4
/4
]
1
1
1
1
1 <
_ N
1 ~
. N O
w .
T O
I .
L =
1 o
1 —
1
1
1
1
1
\
AY
\
N e
U
U4
U4
/4
1 1
]]
1 1
1 1
1 1
1 1
1 1
1 1
“ S “
1 ()] 1
S~
Bt “
. 1
P <2 “
I i 01 1
1) 3 1
L= SoS |
i -
1 1
1]
\ 1
/ U4
// \\\

|||||||||||||||||||||||||||

T ————————————— -

PP A NoLT

hl.1lnx

1 interface 1f0 10.0.0.1/24 127.0.0.1:5000 # to network rl-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via 1f0 # rl

— routing static </ A/ﬁ IQ’) 2

10.0.0.1 # Default route
route 0.0.0.0/0 via 10.0.0.2

e

e

Hosts don't use RIP
=> forwarding table is constant (just send to router)

<59AJ A ﬁ&zﬂﬂﬁﬂlz

:5001 :5002 :5003 :5004
10002 10.1.0.1 10.1.0.2 10.2.0.1

rl.lnx
interface if0 10.0.0.2/24 127.0.0.1:5001 # to network rl-hosts
neighbor 10.0.0.1 at 127.0.0.1:5000 via if@ # hl

interface ifl 10.1.0.1/24 127.0.0.1:5002 # to network rl-r2

. . . . Routers use RIP
neighbor 10.1.0.2 at 127.0.0.1:5003 via ifl # r2 5 Samd ek o nefehbeilng U

=> Set of neighbor routers always known

routing rip

Neighb ters that should b t RIP T@F g'
e'Lg or routcers a SNO e sen messages _ yL
rip advertise-to 10.1.0.2 é . K}/D /Ugléﬂgo

Timi t for RIP
Timing parameters for . p CorSTAWTT

rip periodic-update-rate 5000 # in milliseconds
rip route-timeout-threshold 12000 # in milliseconds /Cﬁ/l_ ﬁ/{//f/é

The “loop” network

Multiple paths from H1 <-> H2 of different costs
=> Use this to test RIP (after you've tested on a smaller network with only two routers)

=> See video for a demo of how things should look when you test

Implementation: key resources

+ Use an external library for parsing IP header (don't do this
yourself)
— For Go/C, see UDP-in-IP examples
— Rust: etherparse library

* We provide parsers for the Inx files—don’t make your own

*(You're welcome to use third-party libraries, so long as they don't
trivialize the assignment (ask if you're concerned)

— Data structures, argument parsing, are fine

IP types and go

Go has two IP types, MP and (newer) netip.Addr
— netip.Addr and netip.Prefix the one you want |

Testing your |P

vnet_run: Run all nodes in a network automatically
« Can run on your node, or the reference
« Uses tmux: see getting started guide for details

Lots of ways to test => See !

« Wireshark: your best resource (see implementation guide)
« Can run some nodes as reference, some nodes as yours

« Can run nodes with debugging

https://brown-csci1680.github.io/iptcp-docs/tools-resources/

Viewing packets in wireshark

Gee JIDEOD X

[MpL GUIDE-

Sample Topologies

Some example networks you can test with...

Roadmap

Start with forwarding first:
Think about: Listening on interfaces, parsing/sending IP
packets, consulting forwarding table, printing test packets

1. Send across one link: H1—>RT& (MPL GV iRl

2. Forward aCross one router :
— linear-rth2: H1->R1->H2
— linear-r1h4 (same thing, multiple hosts)

Roadmap

Once you can send across one router, start thinking about RIP

3. Make sure you can share routes and update the forwarding table
— Eg. linear-r2h2: H1 ->R1->R2 -> H2

—\aﬂ

4. Try disabling/enabling links, make routes expire

5. Loop network: finding best path, updating routes as topology
changes

