
IP Project Gearup II










































Overview

• How to think about the link-layer/forwarding
• How to send packets / test with Wireshark
• Implementation notes
• Any questions you have










































UDP Socket
. . .

Test 
packets

“Link layer”
 (Interfaces)

“Network layer”

Upper layers Routing 
(RIP)

(routers only)

IP Forwarding

if0

UDP Socket

if1

TCP
(next project, hosts only)

User command line (REPL)

IP API

Other commands 
(up, down, l*, …)

User commands

The Big Picture









































UDP Socket
. . .

Test 
packets

“Link layer”
 (Interfaces)

“Network layer”

Upper layers Routing 
(RIP)

(routers only)

IP Forwarding

if0

UDP Socket

if1

TCP
(next project, hosts only)

User command line (REPL)

IP API

Other commands 
(up, down, l*, …)

User commands

What you should be focusing on first

How to receive packets on interfaces, send them back out








































n



How does the link-layer work?  

What does it mean to forward vs. send on an interface?  

> lr
T    Prefix  Next hop Cost
L  10.0.0.0/24  LOCAL:if0   0
S   0.0.0.0/0  10.0.0.2   0

> lr
T    Prefix  Next hop Cost
R  10.2.0.0/24  10.1.0.2   1
L  10.0.0.0/24  LOCAL:if0   0
L  10.1.0.0/24  LOCAL:if1   0








































HOST
ROUTER

I



Key resource:  Implementation Start Guide

=> Tutorial on how to set up sockets, what link-layer should look like 
Do this when you’re ready to start implementing.  Find it here.








































USETIS

https://brown-csci1680.github.io/iptcp-docs/ip-impl-start-guide/
https://brown-csci1680.github.io/iptcp-docs/ip-impl-start-guide/


R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

doc-example

Node ::= “host” or “router”
All nodes connect via interfaces
Þ Hosts have exactly one interface
Þ Routers have multiple interfaces

> lr
T    Prefix  Next hop Cost
R  10.2.0.0/24  10.1.0.2   1
L  10.0.0.0/24  LOCAL:if0   0
L  10.1.0.0/24  LOCAL:if1   0








































S C a



R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

doc-example

r1-hosts
10.0.0.0/24

r1-r2
10.1.0.0/24

r2-hosts
10.2.0.0/24

All topologies have multiple subnets  
• Each subnet has its own IP prefix
• Each interface is connected to one subnet
• Nodes on the same subnet are neighbors

=> Nodes always know how to send packets to their neighbors








































-

Example:   
 - H2, H3, and R2's if1 are neighbors 
 - H1 and R1's if0 are neighbors 



R1H1 if0

h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1
route 0.0.0.0/0 via 10.0.0.2

Virtual IP:  10.0.0.1
Network:  10.0.0.0/24
UDP:  bind on 127.0.0.1:5000

Config for if0

Interface:  has a virtual IP, network, “link-layer” UDP port







































LINK LAYER
ALL

INTERFACES
LISTEN

ON ONE UDP
PORT

HERE PORT 5000



R1H1 if0

h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1
route 0.0.0.0/0 via 10.0.0.2

Virtual IP:  10.0.0.1
Network:  10.0.0.0/24
UDP:  bind on 127.0.0.1:5000
neighbors:  { 10.0.0.2 => 127.0.0.1:5001 }

Config for if0

neighbors:  { 10.0.0.2 => 127.0.0.1:5001 }

:5001:5000

Each interface has a list of neighbors:  mapping of IPs to UDP ports
 => Like an ARP table, but always known ahead of time










































One "neighbor" directive

for each node on this subnet

Each interface has a set of 
neighbors



Can always send directly to your 
neighbors (ie, always know the 
UDP ports for your neighbors)






R1H1 if0

h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1
route 0.0.0.0/0 via 10.0.0.2

Virtual IP:  10.0.0.1
Network:  10.0.0.0/24
UDP:  bind on 127.0.0.1:5000
neighbors:  { 10.0.0.2 => 127.0.0.1:5001 }

Config for if0

neighbors:  { 10.0.0.2 => 127.0.0.1:5001 }

:5001:5000

=> H1 can reach 10.0.0.2 
by sending to UDP port 5001

So if we want to send from H1 to R1,
 we need to send something to UDP port 5001 => but what?








































T



How to think about encapsulation

• Each interface:  thread/goroutine/etc listening on a UDP port 
• Each packet contains an IP header + whatever message 

content








































WHAT IS SENT ON SOCKET

WRITE FHEADAFTS
f



IP Header








































EMÉ É

WIFE
6

HOW TO INTERPRETTHE
DATA IN THE PACKET



UDP-in-IP example

• Complete code example for building an IP header, adding it 
to a packet, and sending it via UDP
– Also computes/validates checksum!

• Let’s break down how this works…










































To send some data

• Build an IP header
– Fill in all header fields as appropriate (source, dest IP, etc.)
– Compute the checksum

• UDP Packet: IP header + data you want to send
• Send packet via socket for that interface








































DIRTIED



R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

doc-example

r1-hosts
10.0.0.0/24

r1-r2
10.1.0.0/24

r2-hosts
10.2.0.0/24

:5002
10.1.0.1

:5001
10.0.0.2

:5000
10.0.0.1

:5003
10.1.0.2

:5004
10.2.0.1

:5005
10.2.0.2

:5006
10.2.0.3

What would it look like to send from h1 -> h3?









































R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

doc-example

r1-hosts
10.0.0.0/24

r1-r2
10.1.0.0/24

r2-hosts
10.2.0.0/24

:5002
10.1.0.1

:5001
10.0.0.2

:5000
10.0.0.1

:5003
10.1.0.2

:5004
10.2.0.1

:5005
10.2.0.2

:5006
10.2.0.3

What happens if h2 sends to h3?







































DEST 10.2.0.3 LOCAL 5006

CAN SEND DIRECTLY
to 113



R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

doc-example

r1-hosts 
10.0.0.0/24

r1-r2 
10.0.1.0/24

r2-hosts 
10.0.1.0/24

:5002 
10.1.0.1

:5001 
10.0.0.2

:5000 
10.0.0.1

:5003 
10.1.0.2

:5004 
10.2.0.1

:5005 
10.2.0.2

:5006 
10.2.0.3

What happens if h2 sends to h3?







































Éeoeoee0 oaeee24

IF SENDING FROM H3
DEST FWDTABLE NEIGHBORSTABLE

10 2.0.2 LOCAL Fo 10.2.0.2 5005

1 t 10 i5ooM HIS NEIGHBOR
Sop fL.FIHost






























































































FORWARDING STEPS

CONSIDER PACKET WITHDESTINATION IP D

SENDDIRECTLY

EG H2 Hz

If

TOOSING NEXTHOP
DESTINATIONT

If destination IP D matches one of this node’s 
assigned IPs

    => Packet is for this node => Send “up” (more on this later)

Otherwise, check forwarding table to look for a match

    (If multiple matches, take the most specific prefix (lecture 7, 9)

If the result is a local route (ie, maps to some ifX)



    => Look up UDP port for D in neighbors table for ifX

          Send packet to this port

If the result is not a local route (ie, has next hop IP G)

     => Need to send packet to G instead:  

      Look up G in forwarding table 

            => maps to some local route on some interface ifY

       Look up UDP port for G in ifY’s neighbor’s table

            Send packet to this port

         






























































































How to SEND UP

OUR NODES DO DIFFERENT THINGS WITH
PACKETS

HOSTS ROUTERS

TESTPACKETS II PACKETS o

TCP G RIP PACKETS 1200

LOOK UP A HANDLER CALLBACK
FUNC

FOR PACKET BASED ON PROTOCOL NUMBER

Register
HANDLER NUM SOMEFUNC

DO THIS AT STARTUP TELL
IP STACK TO CALL SOMEFUN

WHEN RECEIVING A PACKET W
THIS PROTOCOL



How to table lookup?

• You can decide how to store the table
• Need to find the most specific matching prefix
• Use built-in datatypes to help you!  

Go:  prefix.Contains() (netip.Prefix)

r1:

> lr
T    Prefix  Next hop Cost
L  10.0.0.0/24  LOCAL:if0   0
L  10.1.0.0/24  LOCAL:if1   0
R  10.2.0.0/24  10.1.0.2   1

Dest IP == 10.0.0.5, where to send packet?
h1:
 > lr
T    Prefix  Next hop Cost
L  10.0.0.0/24  LOCAL:if0   0
S   0.0.0.0/0  10.0.0.2   0

You do NOT need to be particularly efficient about this step!








































I DEST 1.6.0.5 LOCAL

1



R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

How to think about routing?

r1-hosts
10.0.0.0/24

r1-r2
10.1.0.0/24

r2-hosts
10.2.0.0/24

:5002
10.1.0.1

:5001
10.0.0.2

:5000
10.0.0.1

:5003
10.1.0.2

:5004
10.2.0.1

:5005
10.2.0.2

:5006
10.2.0.3



h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1

routing static

# Default route
route 0.0.0.0/0 via 10.0.0.2

H1 if0

:5000
10.0.0.1

Hosts don’t use RIP
   => forwarding table is constant (just send to router)

ON A HOST

I No RIP



r1.lnx
interface if0 10.0.0.2/24 127.0.0.1:5001 # to network r1-hosts
neighbor 10.0.0.1 at 127.0.0.1:5000 via if0 # h1

interface if1 10.1.0.1/24 127.0.0.1:5002 # to network r1-r2
neighbor 10.1.0.2 at 127.0.0.1:5003 via if1 # r2

routing rip

# Neighbor routers that should be sent RIP messages
rip advertise-to 10.1.0.2

# Timing parameters for RIP
rip periodic-update-rate 5000 # in milliseconds
rip route-timeout-threshold 12000 # in milliseconds

R1 R2if1 if0if0 if1

:5002
10.1.0.1

:5001
10.0.0.2

:5003
10.1.0.2

:5004
10.2.0.1ON A ROUTER

SET OF
C Rip NEIGHBORS

CONSTANTS

FOR TIMING



The “loop” network

Multiple paths from H1 <-> H2 of different costs

 => Use this to test RIP (after you've tested on a smaller network with only two routers)



=> See video for a demo of how things should look when you test 



Implementation:  key resources

• Use an external library for parsing IP header (don’t do this 
yourself)
– For Go/C, see UDP-in-IP examples
– Rust:  etherparse library

• We provide parsers for the lnx files—don’t make your own

• You’re welcome to use third-party libraries, so long as they don’t 
trivialize the assignment (ask if you’re concerned)
– Data structures, argument parsing, are fineI



IP types and go

Go has two IP types, net.IP and (newer) netip.Addr
– netip.Addr and netip.Prefix the one you want

ÞThese libraries have useful helper functions, use them! 

X



Testing your IP
vnet_run:  Run all nodes in a network automatically
• Can run on your node, or the reference
• Uses tmux:  see getting started guide for details

Lots of ways to test => See Tools and Resources!
• Wireshark:  your best resource (see implementation guide)
• Can run some nodes as reference, some nodes as yours
• Can run nodes with debugging

https://brown-csci1680.github.io/iptcp-docs/tools-resources/


Viewing packets in wireshark

SEE VIDEO T

IMPL GUIDE



Sample Topologies

Some example networks you can test with…

See “Sample networks” page for more info, including what 
kinds of things you can test with each network



Roadmap

Start with forwarding first:  
Think about:  Listening on interfaces, parsing/sending IP 
packets, consulting forwarding table, printing test packets

1. Send across one link:  H1->R1
2. Forward across one router :  

– linear-r1h2:  H1->R1->H2
– linear-r1h4 (same thing, multiple hosts)
…

IMPL GUIDE



Roadmap

Once you can send across one router, start thinking about RIP
3. Make sure you can share routes and update the forwarding table

– Eg. linear-r2h2:  H1 -> R1 -> R2 -> H2

4. Try disabling/enabling links, make routes expire

5. Loop network:  finding best path, updating routes as topology 
changes


