GEANeVF

Snowcast Np

A mental model

Snowcast: an “Internet radio station”
« Server: has several “stations” that serve audio data to clients

 C(lients: connect to server, ask for a station, receive audio data
— (Actually two programs, more on this later)

“Radio station”

 Server is always “playing” music, even if no one is listening

« Everyone gets the same data at the same time
4,—._“#.//“_

[Not like Spotify. More like Suech, but for audio. }

Goals

* Intro to socket programming

* Chance to become more comfortable with socket
programming, in any language

* Learn how to implement a protocol, design a robust
server

Thinking about the architecture for Snowcast

" oypsceiBE 0
SrpTior 0"

LT

-- Selects station
-- Prints announcements

> ZepL

-- Binds on
"listener port"

-- Receives data
from station

ho(Up?)

DATA Frokh
CTATIo AT

6 Lib [
P

(

Writes data received to stdout
(Usually, will pipe data to pv command, which
measures rate at which data is being sent.)

=> Keeps track of which client
is connected to which station

=> For each station, reads files
and sends out chunks of data
at 16KB/s

=> When file loops, sends
Announce to tell control client
song has restarted

6/01_7/ NMEED .

5/1/0»%,4 <7 Derecor OVERYiEW [@1@ For.

LIS Teqr

CL(@ Yy

Lox
$71

“LTERS on
porT X

1

ol
ngz;w/

-

/4
(O Nezto, M eisronnd

XN e K

MiceSrone!

(Teh)

[$ ON PorT RV
(=2

UDELLOAE [NIV

@/U STAT1005€

@’/fﬁrg TATI00

M%
Awwovr c€

@ TIE S

Spp/en—

STDLES

2
— Sock

— LLSTEpEn—
Porr X

[. g J

v

(40D Lot
72 S797100)

.

S

AT

G -

&

¢ TUTH
LA ODP 4o

(CLENT P [T X)

/6 £BPC

o O o

(WNeW Frig

)
"/(/t),()ouucé LTULE 2

L_00pS)

LAz [(DWS

A ALTINLED

AFPLL AT

— N7~ S747E porl
TRE Stnvrkr Siaeed

1ED p4734/ 7
5%7‘0; o et &

— oW STAJE 72968

TNE Sepen. OEED
fern. cetear
f&r. CcLled

- Alowo 72 AUPDLE MoLTIZLE
Clrewr?

l_//

£é. For THE
GUESSie GANE
EXAAPLE . -

— o BEK. Loty £
TR YWE 10 cUeL(0
- JOTAL fOLABEr— oF
GUESsES

— &

— CLlEWT Soc k& 7~

/U)BE

= LN/ QUE /0/ G LSS
AW, -

- WE Goklov77VE
Gr Senven. [fon_ AU
CllENT

~ Strtin_ fEErPC
CIC7~ o2 c1ta€

70 woel (NN
EAME Kesert

See——

For YL JES/6R DOCVMEM TRIUK
ABoyr New W (oodd 7o TR

o, SPopcAST!

Thinking about your system's design

When building a networked application, consider the following

=> What state does the server store?

E.qg. for the guessing game
example...

— o BEK. Loty £
TR YWE 10 cUeL(0
- JOTAL fPOLABEr— oF
GUESsES

M/ — o & -

What state does the server need per
client?

How to handle multiple clients?

— CLlEWT Soc k& 7~

/U)BE

— VN QOE /D/ GUESS
N -

- WE Goklov77VE
Gr Senven. [fon_ AU
CllENT

~ SErtin_ fECLC
CIC7~ o2 c1ta€

0 woze? (NN
Z/ME/ Kesert

See——

ok

For Yoo JES/6R DOCVMEM TRIUK

ABoyr Now v ood 7o TR
SAopc AT

Concretely: how Snowcast works

'Client 1

E [snowcast_control

i [snowcast_listener]\

Song Files

Client 2
[snowcast_control 5
I

: [snowcast_listener]‘

%

EKClient N

[snowcast_control

i [snowcast_listener]‘(

«—, Control Protocol (TCP)

<« — = — = Song data (UDP)

Demo

What you will implement

You will implement all three programs
— snowcast_server: the server

— The client (two programs):
* snowcast_control: Control client
* snowcast listener: Listener client

« We give you the specification for the protocol, and how the
programs should behave

* You decide how to implement them

[Need to be able to interoperate with our reference version (and tests)! }

Roadmap

Setup <--- you are here
Milestone: Sending initial messages (welcome/hello)
Building your server (where to put state, etc.)

— Subscribing to stations

— Listing clients

Listener + streaming
Announcements while streaming

Error handling/timeouts/etc

What we will test

* Your programs must interoperate with ours (ie, speak the
same protocol)

* Don’t need to stream music per se—we just measure for
a streaming rate of ~16KiB/s

* Some server design guidelines (see spec)

— Must support multiple clients, protect shared data
— Reasonable error handling (+timeouts)

Languages

You can work in any of the following languages:
* Go

« C/C++

* Rust

We recommend Go, even if it is new to you.

Essential Resources

« The handout: high-level overview, grading details

« Setup guide and warmup: Warmup tutorial, Implementation-level
resources, FAQs

« The specification: all the details on the Snowcast protocol
— Implementation spec: how your programs should behave (arguments, etc.)
— Protocol spec: how your messages should be formatted, etc.

* Lecture examples: don’t copy, but look at them side by side
* Reference version: complete working version you can try
* TJest suites: you can run our tests!

[See the FAQ/Reading list post on Ed!]

Implementation resources

* Language resources on website

» Setup/warmup guide: LOTS of tutorials re: testing,
debugging, common things that go wrong...

 Some utilities for C (linked list, hash table)

Libraries

 You can use libraries you find online (go packages, rust
crates, etc), as long as it doesn't trivialize the assignment

* You must manually parse packets on your own /

» Easy examples: argument parsing, logging, ...

How to get started

Dev environment

* You should be working in the container environment

« Be sure to clone your repo where you can access it from the
container

| ——DEV-ENVIRONMENT
| |-—docker/
| -——home/
| |-—snowcast-yourname/

I
I
| |-—run-container
I

How to start

« Watch Lecture 3, if you have not done so already

* Follow the steps in the warmup, which guides you
through building/sending messages

Take a look at the “guessing game” example code (from
lecture 3, also full version) for more details

HOW tO Sta rt d 90 proj eCt fefo?gfr?gsér?cljessskse?: example

code from Lecture 3

-snowcast-yourname For each program you want to build,
| create a dir and main.go under cmd/
| -cmd/

|

- some-program/

|
| - main.go
- another- |
: | SHOTRSTPTORTA Place shared code here, can be imported
- Maln.go)
|-pke/ /4= ° by any program in cmd
| - somelib/
|

| - somelib.go

The reference implementation

A complete implementation of Snowcast you can run

* Try it out! See how your program should operate!

* Your implementation should act like this one

Wireshark

This is the best way to test early-on.

Ask yourself:
» “Does this packet match the specification?”
« “Any warnings from wireshark?"”

The tester and autograder

We have provided a test suite with all of our tests
« Check your work as you go, see it in Wireshark

« We'll have the same test suite available in gradescope soon
= Gradescope is generally more authoritative/reliable than your own system

« Want to know what a test does? See the list of tests!

Note: please test your project manually first (similar to the demo in this
recording) before using the tester, or as soon as you have failing tests
=> This is often the best way to understand what's happening.

It you are failing tests

* Run manually => observe output in Wireshark
* Run the test on its own (see setup guide)

* |s Gradescope any different?

If you are convinced you should be passing a test, but it's failing,
note it in your readme—we’ll consider this when grading.

Recommendations

» Start early, please ask questions

* Use tests/wireshark to help you debug!

