
TCP Gearup I

Overview

• How this project fits into IP
• What you will build
• How to debug/test in wireshark
• Implementation notes
• Any questions you have

UDP Socket
. . .

Test
packets

“Link layer”
 (Interfaces)

“Network layer”

Upper layers Routing
(RIP)

(routers only)

IP Forwarding

if0

UDP Socket

if1

TCP
(next project, hosts only)

User command line (REPL)

IP API

Other commands
(up, down, l*, …)

User commands

The Big Picture: Last time

UDP Socket
. . .

Test
packets

“Link layer”
 (Interfaces)

“Network layer”

Upper layers Routing
(RIP)

(routers only)

IP Forwarding

if0

UDP Socket

if1

TCP
(hosts only)

User command line (REPL)

IP API

Other commands
(up, down, l*, …)

User commands

Where we are now

Þ A new “higher layer” in your IP stack (on the same level as test packets)

UDP Socket
. . .

Test
packets

“Link layer”
 (Interfaces)

“Network layer”

Upper layers Routing
(RIP)

(routers only)

IP Forwarding

if0

UDP Socket

if1

TCP
(hosts only)

User command line (REPL)

IP API

Other commands
(up, down, l*, …)

User commands

Where we are now

Þ A new “higher layer” in your IP stack (on the same level as test packets)
Þ For hosts ONLY

Þ You are done modifying your router at this point

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Application Protocol

Transport Protocol

Network Protocol

Link-Layer Protocol

Remember this picture?

if f JUST
CONSIDER

ENDPOINTS

Let’s break it down

Test Pkt.
Handler

IP REPL Commands
send, lr, ...

“Network stack”

“Applications”

IP stack

Test packets
(Protocol 0)

TCP Stack
(Transport layer)

Sockets API

TCP packets
(Protocol 6)

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

What goes in your TCP stack?

TCP STACKI THE COMPONENTS

REPL A 999 APPS
C 10 0.0 9999

API CALLS
THAT USE

REPL YOUR TCP
TCPSTACK

SOCKET API YEFEEI.nl

SOCKETS TWO TYPES

IS.ES9 e

PACKET events

SLIDINGWINDOW

DECIDEWHATWHEN
TO SEND Ñ8DLER

TCPSTACK
USESENDFROM IP PROTO 6

IP V

IP LAYER

“Normal” sockets
 - One per active TCP
connection

 - Has TCB (buffers, TCP state,
etc.)

Listen sockets

 - One per open listen port

 - Has no TCB (can’t send/
recv)

Socket table
Maps packets => sockets based
on header info

SendIP(destAddr, protocol, bytes)

IP stack

TCP Stack
(Transport layer)

Sockets API

TCP packets
(Protocol 6)

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

API for sockets: abstraction for creating and using TCP
connections

conn, err := net.Dial(“tcp”, “10.0.0.1:80”)
. . .

someBuf := make([]byte, . . .)
conn.Write(someBuf)

Guidelines: “Socket API” specification in docs
(You get to design your own API!)

conn, err := tcpstack.VConnect(addr, port)
. . .

someBuf := make([]byte, . . .)
conn.VWrite(someBuf)

Model: Go’s socket API (you’ll make your own!)

Example: our socket API (yours can look different)

VListen(port) // Listen on a port
VConnect(addr, port) // Connect to a socket
VAccept(. . .) // Accept new connections (more on this later)

VWrite(. . .) // Send on a socket
VRead(. . .). // Recv on a socket

VClose(. . .) // Close a socket

Guidelines: “Socket API” specification in docs

Focus for
Milestone 1

IP stack

TCP Stack
(Transport layer)

Sockets API

TCP packets
(Protocol 6)

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

TCP stack: logic that happens “under the hood” to
make sockets work (ie, the TCP protocol)

• Should be a separate library you initialize at host
startup (like your IP stack)

• Uses your IP stack to send/recv packets
• IPSend(destIP, protocol, bytes)
• New handler for TCP (protocol #6)

Guidelines: “TCP notes” in docs

IP stack

TCP Stack
(Transport layer)

Sockets API

TCP packets
(Protocol 6)

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

// Basic stuff (test your API)
a Listen on a port; accept new connections
c Connect to a TCP socket
ls List sockets

s Send on a socket
r Receive on a socket

cl Close socket

// Ultimate goal
sf Send a file
rf Receive a file

REPL commands: how we’ll test your
=> Think of these like “applications” that use your
socket API

Focus for
Milestone 1

Demo!

How to test TCP

Most of the time, use linear-r1h2 network
• Only one router, no need for RIP
• Can mainly use reference router

– Will release an updated reference router next week
(has extra features for later in project)

R1 if1H1 if0if0 if0

:5000
10.0.0.1

:5001
10.0.0.2

:5002
10.1.0.1

:5003
10.1.0.2

Note: watching traffic in wireshark works differently in this project!
=> See ”TCP getting started” guide for details

H2

IN WIRESHANK MUST CAPTURE ON

JUSTONEIT

=> Make sure your IP
forwarding works with
the reference router!!
(Test with your host,
our router)

Roadmap

Milestone I
• Initial design for API and TCP stack
• Listen and establish connections => create sockets/TCB
• TCP handshake
• accept, connect, and start of ls REPL commands

How to think about connections

aka. Most important thing for Milestone 1

> ls
SID LAddr LPort RAddr RPort Status
 0 0.0.0.0 9999 0.0.0.0 0 LISTEN
 1 10.1.0.2 9999 10.0.0.1 58060 ESTABLISHED

Relevant concept material
• Lec 12 (ports), Lec 13 (TCP handshake)
• HW2 problem 3

HOW TO READ FOLLOW THE NUMBERS B hissiveOPENA
10 0.0.1

IP SRC 10.1.02 Dst o.o.o.se
TCP SRC 33578DST 1234
SEQ O ACK O

1 a

SRC 0.10.2 DST10.0.0.1 NEWNORMAL
SRC 1234 DST33578 SOCKETCREATED

SEQ O ACK I

SYNSENT ESTAB
IP SRC 10.1.02DST10.0.0.1
TCP SRC 33578DST 1234
SEQ I ACK I PACKETUPDATE

NEW SOCKETSTATE

SYNRECUD ESTAB

HEIBLE remote B É
IP PORT IP PORT STATE

CO.GL REMOTE

IP PORT IP PORT STATE

iaansssirlo.to
s i or

LS = VListen(1234)

B then calls VAccept on this
socket. VAccept blocks until
a client has fully connected

S = VConnect(10.1.0.2,
 1234)

B opens a new listen port
using VListen. This
creates a new Listen
socket (see table below)

How to know it goes to this specific socket,
and not the listen socket? See next page.

CS = LS.VAccept()

When the SYN is received, B
maps it to the open listen socket.
When the listen socket receives a
SYN, it creates a new normal
socket for this specific
connection between A and B,
then sends SYN+ACK.

How to think about connection setup
Scenario: - B listens on port 1234 (ie, “a 1234”)
 - A connects to B’s port (ie, “c 10.1.0.2 1234”)

VAccept unblocks here
(returns socket CS)

A initiates connection using
VConnect. This creates a new
normal socket for this connection
(see table) and sends a SYN.
When the socket is created, A’s TCP
stack picks a random (unused)
source port for this connection.

When A receives the SYN+ACK,
the packet is mapped to the
normal socket for this connection.
When a normal socket receives a
packet, we handle it according to
the TCP state machine. Here,
state == SYN_SENT, so per the
protocol the action when receiving
a SYN+ACK is to send an ACK
and move to ESTABLISHED.

YEH HEADER INFO

a ftp itE.YiiI
SEQ I ACK I

4 TUPLE 1001.8.1 3 5 8,10 0.2

ᵈREME
IP PORT IP PORT STATE

STREET

1234 LISTEN LS

MATCH 10 1.0212391 01.0133578
SYNRECD g

P SRC10.0on DST 10.1.0.2

s

The packet’s source/dest IP and port numbers act like a unique identifier that identifies
this connection => this is called the 4-tuple We map packets to normal sockets based
on the 4-tuple.

How do we map an incoming packet to a socket? To take a look at this, let’s examine what
happens to the last packet in the handshake when it’s received by B (step 5 above):

Another example: What if we received a different packet
that looked like this?

This packet has a different source port, so it has a different
4-tuple! Therefore, it must be for another connection (or it’s
an attempt to start a new one.

 => Thus, this packet should map to the listen socket

To summarize, here’s how the matching process works.

When receiving packet P, check the socket table for a matching socket:

 1. Check for a normal socket with a matching 4-tuple, e.g., (dstIP, dstPort, srcIP, srcPort)

 2. If there is no matching normal socket, check for a listen socket where

 localPort == P.dstPort

 3. If no match, this packet isn’t for any known socket, so drop the packet.

I.E MILESTON I
Most important socket API calls for setting up connections

 VListen
 - "Passive OPEN" in RFC
 - "I want new hosts to connect to me on this port"
 => Returns a listen socket

VAccept
 - Input: a listen socket
 - Block until a client has connected and this new client
connection is in the ESTABLISHED state
 => SO you can't send/recv until you're in ESTABLISHED

 => Returns a normal socket

VConnect
 - Initiate connection to given IP and port
 - "Active OPEN" in RFC
 - Block until connection established, or until abort
 - Returns a normal socket we can use

Connection setup API: recap

VConnect
• “Active OPEN” in RFC
• Initiates new connection, returns normal socket
• Blocks until connection is established, or times out

VListen
• “Passive OPEN” in RFC
• Returns new listen socket
VAccept
• Input: a listen socket
• Blocks until a client connection is established
• Returns new normal socket

How exactly you implement this is up to you, but your API should have calls like this
(This isn’t arbitrary—it matches what the kernel API looks like)

// Create listen socket (bind)
listenConn, err := net.ListenTCP("tcp4", addr)

for {
 // Wait for a client to connect
 clientConn, err := listenConn.Accept()
 if err != nil {
 // . . .
 }

 // . . .
 go handleClient(clientConn)

}

func handleClient (conn net.Conn) {
 conn.Read(. . .)
}

Think back to your Snowcast server…

Listen socket

Why separate listen and accept?
=> Need to be able to handle multiple client connections!

“Normal” socket

func ACommandREPL() { // Runs as separate thread/goroutine

 // Create listen socket (bind)
 listenConn, err := tcpstack.VListen(port)

 for {
 // Wait for a client to connect
 clientConn, err := listenConn.VAccept()
 if err != nil {
 // . . .
 }

 // Store clientConn to use by other REPL commands
 }
}

Your ”a” command will look similar…

Summary: two types of sockets

Type When created What it does What’s in it?*
Listen

sockets
“a” command (VListen) • “I want to receive new

connections on this port”
• Always in state LISTEN
• Not connected to another

endpoint! (can’t send/recv
on it, has no TCB

• List of sockets for
new/pending
connections

“Normal”
sockets

“c” command (VConnect)
“a” command (VAccept)

• Used for “normal” TCP
connections between
endpoints

• TCB (send/recv buffers,
all other TCP protocol
state)

*: At minimum, for now

=> VTCPListener in API example

=> VCTPConn in API example

Implementation stuff

conn, err := tcpstack.VConnect(addr, port)
. . .
conn.VWrite(someBuf)

Go-style
• VConnect/VCccept/VListen return structs for normal/listen sockets
• Other functions (VAccept, VWrite, …) are methods on these structs

C-style
• VConnect/VCccept/VListen return numbers (like file descriptors)
• Other functions (VAccept, VRead, …) take socket number as argument

int sock_fd = VConnect(addr, port)
. . .
VWrite(sock_fd, some_buffer)

Ways to build the API More info: “Socket API example” in docs

conn, err := tcpstack.VConnect(addr, port)
. . .
conn.VWrite(someBuf)

Go-style
• VConnect/VCccept/VListen return structs for normal/listen sockets
• Other functions (VAccept, VWrite, …) are methods on these structs
• In REPL: map socket ID => struct

C-style
• VConnect/VCccept/VListen return numbers (like file descriptors)
• Other functions (VAccept, VRead, …) take socket number as argument
• In TCP stack: map socket ID => struct

int sock_fd = VConnect(addr, port)
. . .
VWrite(sock_fd, some_buffer)

=> How you implement this is up to you (don’t even need to pick one of these)!

Ways to build the API More info: “Socket API example” in docs

Building TCP packets

• MUST use standard TCP header
• Encapsulation: TCP packet => payload of virtual IP packet
• Once again, you don’t need to build/parse this yourself

Þ See the TCP-in-IP example for a demo on how to build/parse a TCP header
(mostly uses same libraries as before)

FEDELI
t.tw

https://github.com/brown-csci1680/lecture-examples/tree/main/tcp-demo

The TCP checksum
… is pretty weird

Computing the TCP checksum involves making a “pesudo-header”
out of some IP and TCP header fields:

Þ You don’t need this working for milestone 1
Þ See the TCP-in-IP example for a demo of how to compute/verify it

Reference implementation

• Our implementation of TCP
• Try it and compare with your version!

Note: we switched to a new reference last year (after 8+ years!)
• We’ve tested as best we can, but there may be bugs
• See Ed FAQ, docs FAQ for list of known bugs
• Let us know if you have issues!

Þ If the spec disagrees with the reference implementation,
the spec wins-–don’t propagate buggy behavior

(please help us find any discrepancies!)

Roadmap

Milestone I
• Start of your API and TCP stack
• Listen and establish connections => create sockets/TCB
• TCP handshake
• accept, connect, and start of ls REPL commands

Be prepared to talk about what goes in your data structures, design plan, etc, similar to
your IP milestone

Roadmap

Milestone II
• Basic sending and receiving using your sliding

window/send receive buffers
• Plan for the remaining features

Roadmap

Final deadline
• Retransmissions (+ computing RTO from RTT)
• Zero-window probing
• Connection teardown
• Sending and receiving files (sf, rf)

IP stack

TCP Stack

Sockets API

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

Where to get more info

Our docs: “REPL commands” spec

Our docs: ”Socket API” example

Guidelines: “RFC notes” in our docs
 - Links to relevant RFCs (eg. RFC9293)
 - Our modifications/notes on the RFCs

- TCP-in-IP example (how to make/parse packets)
- IP docs

WEHAVE DOCS FOR
EACH COMPONENT

Closing thoughts

• Use your milestone time wisely!

• Wireshark is the best way to test—use it!

• As you work with your IP code, consider refactoring!
– You’re going to be working with this code for >= 3 weeks

• Stuck? Don’t know what’s required? Just ask!
(And see Ed FAQ)

We are here to help!

fastest

