TCP Gearup |

Overview

How this project fits into IP
What you will build

How to debug/test in wireshark
Implementation notes

Any questions you have

Upper layers

“Link layer”
(Interfaces)

The Big Picture: Last time

lUser commands

’ I P ECRCREEEREE I _______________ . Other commands

‘: (up, down, I*, ..)
TCP

(next project, hosts only)

Where we are now

lUser commands

Other commands
(up, down, I*, ..)

TCP

(hosts only)

[:> A new "higher layer” in your IP stack (on the same level as test packets) 1

Where we are now

lUser commands

Other commands
(up, down, I*, ..)

TCP

(hosts only)

= A new “higher layer” in your IP stack (on the same level as test packets)
= For hosts ONLY
= You are done modifying your router at this point

Remember this picture?

End host End host

Application Protocol
Application Application

Presentation Presentation

Session Session

Transport Protocol

Transport

A Network/ProtOColmmmy cmmmmmmy
Network == wr == (== = Network Network ™ = = == Network

ink-Layer Protocolmmms s

Data link == o == == ' Data link Data link ™= == == «= Data link

A— —

Physical Physical — Physical Physical

Transport

One or more nodes
within the network

JULT EDNK) DI
ENY poryc/

Let’s break it down

v
Sockets API

TCP Stack

(Transport layer)

“Network stack”

TCP packets
(Protocol 6)

Test packets
(Protocol 0)

What goes in your TCP stack?

JCP Sk 7NE Enrwenrt

Ker- % 755 " Apec 7
C Jo.9.0.) [589 A OSE
) “ N AP cALLS OR TCF

...

.......................

(v Cowmter, [kt Co/l/ETC
;oC/Cé:T f(P, ViLisTEN, /\.\.) Cockir AP/)

Soctert: Two 7)€ L
“Normal” sockets Listen sockets
- One per active TCP - One per open listen port
connection - Has no TCB (can’t send/
- Has TCB (buffers, TCP state, recv)
etc.)
7CP Loglc AKET evegur€
ATE ;| |
; AA“//’O C/ ; Socket table
; Lipwes o JPOOW .\ Maps packets => sockets based
i on header info

Decloe wAAT/ LHEY
70 50D

e
NAWDLEI_
(Pro7o =é>

USE Seno tnen (7!
TCP !@CK SendIP (destAddr, protocol, bytes)

..

/P (AVER

API for sockets: abstraction for creating and using TCP
connections

Model: Go's socket API (you'll make your own!)
conn, err := net.Dial(“tcp”, “10.0.0.1:80”)

someBuf := make([]byte, . . .)
conn.Write(someBuf)

v
Sockets API
TCP Stack

(Transport layer)

Example: our socket API (yours can look different)
conn, err := tcpstack.VConnect(addr, port)

someBuf := make([]byte, . . .)
conn.VWrite(someBuf)

Focus for VListen(port) // Listen on a port
Milestone 1 VConnect(addr, port) // Connect to a socket

VAccept(. . .) // Accept new connections (more on this later)
VWWrite(C. . .) // Send on a socket

VRead(. . .). // Recv on a socket

VClose(. . .) // Close a socket

TCP stack: logic that happens “under the hood” to
make sockets work (ie, the TCP protocol)

* Should be a separate library you initialize at host
startup (like your IP stack)

« Uses your IP stack to send/recv packets
* |IPSend(destlIP, protocol, bytes) TCP Stack
« New handler for TCP (protocol #6) e

TCP packets
(Protocol 6)

v

REPL commands: how we’ll test your

=> Think of these like "applications” that use your
socket API

// Basic stuff (test your API)

a Listen on a port; accept new connections
c Connect to a TCP socket Eﬁfuifor ,
1s List sockets llestone

s Send on a socket
r Receive on a socket

cl Close socket
// Ultimate goal

sf Send a file
rf Receive a file

Demol!

IV WIRESNAMK, Wit cAorvee oM
YV oME NST!

e

How to test TCP

310/00) :5003
10.0.0.1 10002 10.1.0.1 10.1.0.2
\)
Most of the time, use linear-rth2 network —> Make sure your IP

» Only one router, no need for RIP el g Ul Bt
the reference router!!

« Can mainly use reference router (Test with your host,

— Will release an updated refgrencg router next week our router)
(has extra features for later in project)

=> See "TCP getting started” guide for details

[Note: watching traffic in wireshark works differently in this project! }

Roadmap

Milestone |

* Initial design for APl and TCP stack

e Listen and establish connections => create sockets/TCB
 TCP handshake

* accept, connect, and start of Is REPL commands

How to think about connections

aka. Most important thing for Milestone 1

> 1s

SID LAddr LPort RAddr RPort Status
] 0.0.0.0 9999 0.0.0.0] LISTEN
1 10.1.0.2 9999 10.0.0.1 580060 ESTABLISHED

How to think about connection setup

Scenario:

- B listens on port 1234 (ie,

“a 1234")

- A connects to B’s port (ie, “c 10.1.0.2 1234")

How 7n KEAD:

A

/0. 0.0/

Y

7/
Actye oreny”’

@S = VConnect(10.1.0.2, ==
1234)

A initiates connection using

VConnect. This creates a new

normal socket for this connection

(see table) and sends a SYN.

When the socket is created, A's TCP

stack picks afandomi(unused)

sourcegporbfor this connection.

Syw_SENT-» £STAB @

When A receives the SYN+ACK,
the packet is mapped to the
normal socket for this connection.

%/

47

FoLLow THE pumpens

%
JP S¢c:loaoz DST: 1000
TCP (r(355 ST 23

SEa: O AcK. @

L

\

7

/77 SYC:10.0:0.) PST [o.1.0.2
TCP (R)2y AT 3350k

SCe: o AcK:. |

@4[5&7 NoRMAL
SocKET CREATED!

When the SYN is received, B
maps it to the open listen socket.
When the listen socket receives a
SYN, it creates a new normal
socket for this specific
connection between A and B,

10.).0.2

0

"PAse)vE OPEN "

B opens a new listen port
using VListen. This
creates a new Listen
socket (see table below)

LS = VlListen (1234)
v 2 ®
CS = LS.VAccept()

B then calls VAccept on this
socket. VAccept blocks until
a client has fully connected

"-&

(

JP S¥C: o102z DST: 10.00.]
TCP (R 335 NT 238

then sends SYN+ACK.

When a normal socket receives a
ket, we handle it according t ' . =T VPA7ES
e seai | Ak) |E)AKET 0o
state == SYN_SENT, so per the —> 4/[0-) SakET STATE!
protocol the action when receiving |~
a SYN+ACK is to send an ACK
and move to ESTABLISHED. ST _RECYD = ESTAB
, RSN
¢ TABLE Fe roe
LocAL RLMITE LocAL RMAE
' - SAre -
@ Jo.v.0.|| B357p l0-10.2 44 57’; 7;;— | =« /22Y * X s e
e e e e e
Q ESTAR
)

How to know it goes to this specific socket,

\&/

and not the listen socket? See next page.

How do we map an incoming packet to a socket? To take a look at this, let’s examine what
happens to the last packet in the handshake when it’s received by B (step 5 above):

s

P

Loood psr lo0.l.0-2
%_;/ _ 123¢

The packet’s source/dest IP and port numbers act like a unique identifier that identifies
this connection => this is called the 4-tuple We map packets to normal sockets based

on the 4-tuple. /}7 POLT— // P//t.?/‘
G-TorE: ((0.0.0.1, 33576 /0.4.6.2,)23{)
L— e //

Bs roce

L OCAC RMITE SoKET
1p | poar | e | per |SHTE | STEVT (f'zc\/>
} 1231 | % el &5 e

C% ’23({ 70.0-0.] 33577 Syn- Reewd C S

To summarize, here’s how the matching process works.
When receiving packet P, check the socket table for a matching socket:
1. Check for a normal socket with a matching 4-tuple, e.g., (dstIP, dstPort, srclP, srcPort)
2. If there is no matching normal socket, check for a listen socket where
localPort == P.dstPort
3. If no match, this packet isn’t for any known socket, so drop the packet.

Another example: What if we received a different packet .

that looked like this? /? S’JZC (0-0-0. DST: 10.].0.2.
7CP cpe 21357 o7 (23T

This packet has a different source port, so it has a different

4-tuple! Therefore, it must be for another connection (or it’s SE&: / ﬂCK' /
an attempt to start a new one.

=> Thus, this packet should map to the listen socket

Most important socket API calls for setting up connections

VListen (/E M,LES‘TDU?I)

- "Passive OPEN" in RFC v/
- "I want new hosts to connect to me on this port"
=> Returns a listen socket

VAccept
- Input: a listen socket
- Block until a client has connected and this new client
connection is in the ESTABLISHED state
=> SO you can't send/recv until you're in ESTABLISHED

=> Returns a normal socket

VConnect
- Initiate connection to given IP and port
- "Active OPEN" in RFC
- Block until connection established, or until abort
- Returns a normal socket we can use

Connection setup API: recap

VConnect

e “Active OPEN" in RFC

* Initiates new connection, returns normal socket

e Blocks until connection is established, or times out

VLlisten

« “Passive OPEN" in RFC

* Returns new

VAccept

* Input: a

* Blocks until a client connection is established
e Returns new normal socket

[How exactly you implement this is up to you, but your API should have calls like this }
(This isn't arbitrary—it matches what the kernel APl looks like)

Think back to your Snowcast server...

// Create listen socket (bind)

listenConn, err := net.ListenTCP("tcp4"”, addr)

for { . , = Listen socket
// Wait for a client to connect
clientConn, err := listenConn.Accept()

if err !'= ni
// -

}

// -

go handleClient(clientConn)

¥

func handleClient (conn net.Conn)
conn.Read(. . .)
}

Why separate listen and accept?
=> Need to be able to handle multiple client connections!

Your "a” command will look similar...

func ACommandREPL() { // Runs as separate thread/goroutine

// Create listen socket (bind)

listenConn, err := tcpstack.VListen(port)
for {
// Wait for a client to connect
clientConn, err := listenConn.VAccept()
if err = nil {
// .
}

// Store clientConn to use by other REPL commands

Summary: two types of sockets

Type | Whencreated | What it does | What's in it?*

Listen “a" command (VListen) “| want to receive new List of sockets for
sockets connections on this port” new/pending

-> VTCPListener in APl example Always in state LISTEN connections
Not connected to another

endpoint! (can’t send/recv

on it, has no TCB

“Normal” “c” command (VConnect) Used for “normal” TCP « TCB (send/recv buffers,
sockets “a” command (VAccept) connections between all other TCP protocol

: endpoints state)
=> VCTPConn in APl example

*. At minimum, for now

Implementation stuff

Ways to build the API | Moreinfo: “Socket APl example” in docs |

conn, err := tcpstack.VConnect(addr, port)

éoﬁn:VWrite(someBuF)
Go-style
« VConnect/VCccept/VListen return structs for normal/listen sockets
* Other functions (VAccept, VWrite, ...) are methods on these structs

int sock_fd = VConnect(Caddr, port)

VWFi%e(sock_Fd, some_buffer)

C-style
« VConnect/VCccept/VListen return numbers (like file descriptors)
 Other functions (VAccept, VRead, ...) take socket number as argument

Ways to build the API | Moreinfo: “Socket APl example” in docs |

conn, err := tcpstack.VConnect(addr, port)

éoﬁn:VWrite(someBuF)
Go-style
« VConnect/VCccept/VListen return structs for normal/listen sockets
* Other functions (VAccept, VWrite, ...) are methods on these structs
* In REPL: map socket ID => struct

int sock_fd = VConnect(Caddr, port)

VWFi%e(sock_Fd, some_buffer)

C-style
« VConnect/VCccept/VListen return numbers (like file descriptors)
 Other functions (VAccept, VRead, ...) take socket number as argument

 In TCP stack: map socket ID => struct

£=> How you implement this is up to you (don't even need to pick one of these)! }

_
Sequence Number

Acknowledgement Number
Data B
Ortoae| Peserved [REEETT windowsze |

e MUST use standard TCP header

« Encapsulation: TCP packet => payload of virtual IP packet
* Once again, you don’t need to build/parse this yourself

= See the for a demo on how to build/parse a TCP header
(mostly uses same libraries as before)

https://github.com/brown-csci1680/lecture-examples/tree/main/tcp-demo

The TCP checksum

: : 4 8 16 0 1
. Is pretty weird Totat Tength Destinaton Port
@ Sequence Number

20B
Acknowledgement Number e
Olieey | Reserved HEEENN windowsize | \

Checksum Urgent Pointer

Options

Computing the TCP checksum involves making a “pesudo-header”
out of some IP and TCP header fields:

TCP pseudo-header for checksum computation (IPv4)
Bit offset 4-7 8-15

0 Source address

32 Destination address

64 Protocol TCP length

= You don’t need this working for milestone 1 é——’
= See the TCP-in-IP example for a demo of how to compute/verify it

Reterence implementation

* Our implementation of TCP
 Try it and compare with your version!

Note: we switched to a new reference last year (after 8+ years!)
« We've tested as best we can, but there may be bugs
« See Ed FAQ, docs FAQ for list of known bugs

* Let us know if you have issues!

the spec wins-——don't propagate buggy behavior

[= If the spec disagrees with the reference implementation, }
(please help us find any discrepancies!)

Roadmap

Milestone |

@ ° Start of your APl and TCP stack
e Listen and establish connections => create sockets/TCB
 TCP handshake

o . accept, connect, and start of Is REPL commands

Be prepared to talk about what goes in your data structures, design plan, etc, similar to }

O [your IP milestone

Roadmap

Milestone |

© ° Basic sending and receiving using your sliding
window/send receive buffers

 Plan for the remaining features

O

Roadmap

Final deadline

Retransmissions (+ computing RTO from RTT)
Zero-window probing

Connection teardown

Sending and receiving files (sf, rf)

Where to get more info (E WVE PGS U /
EAN EOMPONENT

F { Our docs: “REPL commands” spec }

Sockets AP { Our docs: “Socket API” example]
<
< a TCP-in-IP example (how to make/parse packets)
L- IP docs

Closing thoughts

Use your milestone time wisel’z!

Wireshark is the best way to test—use it!

As you work with your IP code, consider refactoring!
— You're going to be working with this code for >= 3 weeks

Stuck? Don’t know what's required? Just ask!
(And see Ed FAQ)

[We are here to help!]

