
TCP Gearup I

FZ

I

Overview

• How to think about send/recv
• About buffers
• How to debug/test in wireshark
• Implementation notes
• Any questions you have

Roadmap

Milestone II
• Basic sending and receiving using your sliding

window/send receive buffers
• Plan for the remaining features

Key resources

• Lecture 14: Send/recv basics
• Lecture 15: How sliding window works, retransmissions, zero-window

probing

• HW3: Do it sooner rather than later—it will help!

• Testing and tools stuff: ”TCP getting started” and “Testing with
Wireshark” in the docs

VWrite (“s” command in REPL)

 - Input: some normal socket, data you want to send

 => You need to define your send/recv buffer, what variables/state etc you
need to represent them

 - Load data into your send buffer

 - Block if send buffer is full, otherwise return number of bytes send

VRead (“r” command)

 - Input: normal socket, buffer for received data

 - Read from recv buffer, write that data to whatever buffer was passed in

 - If recv buffer is empty, block

 - Return: number of bytes read***

Your goals:

 - Defining data structures (buffers, etc), variables for how you keep track of
things in the buffer

 - Receive packets, load them into recv buffer

 - Send packets from send buffer

Sending and receiving: API

VWrite (”s” command)
• Input: normal socket, data to send
• Loads data into send buffer
• Block if send buffer is full

VWrite (“r” command)
• Input: normal socket, buffer for received data
• Read from recv buffer, write to app buffer
• Block if recv buffer empty
• Return: number of bytes read

More info: “Socket API example” in docs

Demo!

Your buffers
• Should use a circular buffer
• You get to decide on mechanics

– How to keep track of read/write pointers
– How to translate between sequence numbers => buffer indices

• You MAY use a library, but you should decide if this is what
you want

For detailed info
=> RFC9293 Sec 3.3: what all the variables mean
Þ Lecture 15: detailed breakdown of how to use buffers

https://en.wikipedia.org/wiki/Circular_buffer

SENDING SIDE SNO HETTIFSENT
WRITE
ADDSDATA APP

s o i f f o n e

FIstscr.tw
DECIDES WHENTO SEND

SENTBUTNOTACK'D UPDATED BYAPP
INFLIGHTDATA

RECEIVING SIDE r.cafPATEDBYTP
STACK

RCO
A Geo

VREADC LBR

APPREMOVES NEXT BYTE EXPECT
FROMBUFFER

If PDATES
ON PET

DATA RECEIVED IN ORDER
EVENTS

READY FORAPP

Want to see a better version of this? See the notes from lecture 15.

For more explanations, see RFC9293, Sec 3.3.

2 3
BCD F

SEQ 100101102103
0010110210 in_ 01 2 3

A B C D A B

UNP LBR NYT
W 510240

0 Rev SEND
ACK

NT
ALK READ

10202

C D

UNP
LBW

NAT

SENDMORE
10410502103

EF C D

UNA
LBW

NIT

For more info on this part, we recommend doing HW3–it is designed to help here!

What happens in the TCP stack?

Your TCP stack will have some threads—you decide what they do

When you get a new packet…
 => Look up 4-tuple in socket table => find socket struct
 => Socket struct => all your per-connection TCP state
 (buffers, sequence numbers, etc….)

What to do with each segment? RFC9293 Sec 3.7.10 is your friend
=> + our modifications in “TCP notes” docs

REPL API CALLS
TCPSTACK

SOCKET API YEFEEI.nl

SOCKETS TWO TYPES

SEE'm PACKETEVENTS

SLIDINGWINDOW

DEIFELS WHEN

YIDDLER
TCP STACK

USESENDFROM IP PROTO 6

IP V

IP LAYER

“Normal” sockets
 - One per active TCP
connection

 - Has TCB (buffers, TCP state,
etc.)

Listen sockets

 - One per open listen port

 - Has no TCB (can’t send/
recv)

SendIP(destAddr, protocol, bytes)

Socket table
Maps packets => sockets based
on header info

How does all of this fit into your work from before????

After Milestone I, most of your logic will be part of how you represent "normal-
type" sockets

For any packet received/API call => map to a socket

 => Based on that socket's state (buffers, state machine, etc), what should
happen?

VREADL
XP WRITEL

SEND BUF RECU BUF

7540 4054

ACKS ACKS

What happens inside a socket?

"Receiving logic"

 - Decides how to write into
buffer as packets are
received

- May eventually involve
other data structures (eg.
queue for early arrivals)

Sends segments via your IP
stack (eg. SendIP)

Packet arrivals
(when len(TCP payload) > 0)

"Sending logic"

- Decide what/when to
send, update buffers/
pointers

- May eventually involve
other data structures
besides send buffer (eg.
retransmission queue)

Implementing VRead/VWrite
Performance requirement: send/recv process MUST be event driven

– No time.Sleep
– No busy-waiting

Where does this apply?
• REPL: s, r, sf, rf
• VRead/VWrite
• Deciding when to send, or check for new data
• Retransmissions

=> Channels, condition variables, etc. are your friends

Channels?

REALLY => See code demo in video

 Also "channels demo" in docs and resources

How to test TCP

R1 if1H1 if0if0 if0

:5000
10.0.0.1

:5001
10.0.0.2

:5002
10.1.0.1

:5003
10.1.0.2

Note: watching traffic in wireshark works differently in this project!
=> See ”TCP getting started” guide for details

H2

Useful wireshark mechanics
• SEQ/ACK analysis
• Follow TCP stream
• Validating the checksum

Reference implementation

• Our implementation of TCP
• Try it and compare with your version!

Note: we’re using a new reference this year (after 8+ years!)
• We’ve tested as best we can, but there may be bugs
• See Ed FAQ, docs FAQ for list of known bugs
• Let us know if you have issues!

Þ If the spec disagrees with the reference implementation,
the spec wins-–don’t propagate buggy behavior

(please help us find any discrepancies!)

IP stack

TCP Stack

Sockets API

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

Where to get more info

Our docs: “REPL commands” spec

Our docs: ”Socket API” example

Guidelines: “TCP notes” in our docs
 - Links to relevant RFCs (eg. RFC9293)
 - Our modifications/notes on the RFCs

- TCP-in-IP example (how to make/parse packets)
- IP docs

Roadmap

Final deadline
• Retransmissions (+ computing RTO from RTT)
• Zero-window probing
• Connection teardown
• Sending and receiving files (sf, rf)

MILESTONEID

MILESTONE YOU WILL WANT ALL

OF THIS TIME FOR THE LAST PART TCPD

The features you need after Milestone II are not trivial—there is a lot of testing
and debugging involved, so do not underestimate this part. All of your other
course deadlines are set in order to ensure you have enough time between
Milestone II and the TCP deadline.

What this means now: make sure you use your Milestone II time wisely so that
you can spend the time afterward to focus on the other features!

IP stack

TCP Stack

Sockets API

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

Where to get more info

Our docs: “REPL commands” spec

Our docs: ”Socket API” example

Guidelines: “TCP notes” in our docs
 - Links to relevant RFCs (eg. RFC9293)
 - Our modifications/notes on the RFCs

- TCP-in-IP example (how to make/parse packets)
- IP docs

Closing thoughts

• Use your milestone time wisely!

• Wireshark is the best way to test—use it!

• Stuck? Don’t know what’s required? Just ask!
(And see Ed FAQ)

We are here to help!

