TCP GearupTL

Overview

How to think about send/recv
About buffers
How to debug/test in wireshark

* |Implementation notes
* Any questions you have

Roadmap

Milestone |

© ° Basic sending and receiving using your sliding

e

window/send receive buffers

 Plan for the remaining features

O

Key resources

* Lecture 14: Send/recv basics

e Lecture 15: How sliding window works, retransmissions, zero-window
probing =

« HWS3: Do it sooner rather than later—it will help!

=

« Testing and tools stuff: “TCP getting started” and “Testing with
Wireshark” in the docs

VWrite (“s” command in REPL)
- Input: some normal socket, data you want to send
=> You need to define your send/recv buffer, what variables/state etc you
need to represent them
- Load data into your send buffer
- Block if send buffer is full, otherwise return number of bytes send

VRead (“r’ command)
- Input: normal socket, buffer for received data
- Read from recv buffer, write that data to whatever buffer was passed in
- If recv buffer is empty, block

- Return: number of bytes read™*

Your goals:
- Defining data structures (buffers, etc), variables for how you keep track of
things in the buffer
- Receive packets, load them into recv buffer
- Send packets from send buffer

[More info: “Socket APl example” in docs]

Sending and receiving: API

VWrite (“s” command)
* Input: normal socket, data to send

 Loads data into send buffer
 Block if send buffer is full

VWrite (“r” command)

* Input: normal socket, buffer for received data
« Read from recv buffer, write to app buffer
 Block if recv buffer empty

* Return: number of bytes read

Demol!

Your buffers

 Should use a

* You get to decide on mechanics
— How to keep track of read/write pointers
— How to translate between sequence numbers => buffer indices

+ You MAY use a library, but you should decide if this is what
you want

For detailed info
=> RFC9293 Sec 3.3: what all the variables mean

= Lecture 15: detailed breakdown of how to use buffers

https://en.wikipedia.org/wiki/Circular_buffer

Serome G pe (Sw0) o f):f;rzz

YWRHE (]

\L s DI o(4¢P)

v o e t I J ‘; D e e

UMA V%A R
UPDATED A8 / Z TZ’P STACk
A ey’ petpeS Lol 1o Lero

SENT Bur NoT Ack'p sy agp

"/'U PLIEAT DATA ! UPDATED BY 72¢ Gk
EALCY AReIVALS
E&elypwe Si10e 7 - —
(xce) ﬁ 4/ 8 ey
6 8 o

Veepo() LR WAT
(AP Benoves L/ / \ s (Mexr Bye ExPECT

PPk, poeret-) 10 Receve —

TP SR WOATES o0 Prr

cverat
TATA Peceiver Oeper,,

LEAY Fouw APP

Want to see a better version of this? See the notes from lecture 15.

For more explanations, see RFC9293, Sec 3.3.

For more info on this part, we recommend doing HW3-it is designed to help here!

1)
(=N
0O/ 7 3 —

(00 (v) 1ol JO)

Apc D

w1
N,

N‘”/
@fmc 224D

D
.|
L,

N‘“/
@ St Aot e

10Y 163 102 lo3

EF ¢ D

TUNA

LB
qxl/

NI

Lot v

S

S:lop

%

S:/O& Ve DY

—
-~

b
Aot 7

S —=

[ae— |

/C/pf\>

555(60)o) (o2 103
oy Z 7 2 3
A B

LZ:L N%¢
RCV7? (inD
& ALk

What happens in the TCP stack?

Your TCP stack will have some threads—you decide what they do

When you get a new packet...
=> Look up 4-tuple in socket table => find socket struct

=> Socket struct => all your per-connection TCP state
(buffers, sequence numbers, etc....)

What to do with each segment? RFC9293 Sec 3.7.10 is your friend
=> + our modifications in “TCP notes” docs

How does all of this fit into your work from before????

After Milestone I, most of your logic will be part of how you represent "normal-
type" sockets

For any packet received/API call => map to a socket

=> Based on that socket's state (buffers, state machine, etc), what should
happen?

R T e S R R I

(VCownier; [gt Cofe/bTe
SOCKUT]4?, l{LIS]'L:N/ ,»\) Cocktr AP/

Soctert: Jwo 7r00€

“Normal” sockets Listen sockets
- One per active TCP - One per open listen port
connection - Has no TCB (can’t send/

- Has TCB (buffers, TCP state, recv)
etc.)
7CP LoglC x UCKET Vs

SHTE Mhcymwe, | |

; . Socket table
i g LIDWe O Ip0ow .\ Maps packets => sockets based
; on header info

L}
------------------------------------ 4

Dec/oe wHA7/ WHEY
70 s5&0D

e

NAWDLER_
10 / #1070 = >

TCP f@CK SeUndIP (Sc.ide-‘sz:c—lﬂ:"pr/o’iocol, bytes) (é

..

/P AYER

“Normal” sockets
- One per active TCP

connection What happens inside a socket?

- Has TCB (buffers, TCP state, f
etcl)

7CP Log/C
SATE fideymwe g
Slpwe ©poow ..

..

: nSending_logic" : : "Receiving logic" : e
;'/) ~‘/":" ! - Decide what/when to : - Decides how to write into e """.:.\
i H i send, update buffers/ : buffer as packets are P '
,': OTHNER— (. %f' pointers : received bV orwen |
~ PSS i . . f‘i‘ PS
: i -May eventually involve : - May eventually involve : 4
. i | other data structures : : other data structures (eg. 7,
.~ i besides send buffer (eg. : queue for early arrivals) o

i retransmission queue)

Acks AcCks

~/

Sends segments via your IP Packet arrivals
stack (eg. SendIP) (when len(TCP payload) > 0)

Implementing VRead/VWrite

Performance requirement: send/recv process MUST be event driven
— No time.Sleep

— No busy-waiting

Where does this apply?

e REPL: s,r, sf, rf

 VRead/VWrite

« Deciding when to send, or check for new data

[=> Channels, condition variables, etc. are your friends }

Channels?

=> See code demo in video (< E'ALLYJ

Also "channels demo" in docs and resources

How to test TCP

—:5000 :5001 ﬂ :5002 :5003

10.0.0.1 10.0.0.2 10.1.0.1 10.1.0.2

Useful wireshark mechanics
« SEQ/ACK analysis

* Follow TCP stream
* Validating the checksum

ote: watching traffic in wireshark works differently in this project!
=> See "TCP getting started” guide for details

B

Reference implementation

* Our implementation of TCP
 Try it and compare with your version!

Note: we're using a new reference this year (after 8+ years!)
« We've tested as best we can, but there may be bugs
« See Ed FAQ, docs FAQ for list of known bugs

* Let us know if you have issues!

the spec wins-——don't propagate buggy behavior

[= If the spec disagrees with the reference implementation, }
(please help us find any discrepancies!)

Where to get more info

F { Our docs: “REPL commands” spec }

Sockets AP { Our docs: “Socket API” example]
<
< a TCP-in-IP example (how to make/parse packets)
L- IP docs

Roadmap

Final deadline

Retransmissions (+ computing RTO from RTT)
Zero-window probing

Connection teardown

Sending and receiving files (sf, rf)

November 2024 Today

Sun Mon Tue Wed Thu Fri Sat

Day of the Dead

© 4 5 6 / 8 ’
10 1 12 13 y v B
Yo WILL gl Aw
i

17 18 19 2 2 2 -

oF TUC M Fo e wsr per!

)

’
24 25 26 . 28 2 .

Thanksgiving

The features you need after Milestone Il are not trivial—there is a lot of testing
and debugging involved, so do not underestimate this part. All of your other
course deadlines are set in order to ensure you have enough time between
Milestone Il and the TCP deadline.

What this means now: make sure you use your Milestone Il time wisely so that
you can spend the time afterward to focus on the other features!

Where to get more info

F { Our docs: “REPL commands” spec }

Sockets AP { Our docs: “Socket API” example]
<
< a TCP-in-IP example (how to make/parse packets)
L- IP docs

Closing thoughts

« Use your milestone time wisely!

* Wireshark is the best way to test—use it!

* Stuck? Don’t know what's required? Just ask!
(And see Ed FAQ)

[We are here to help!]

