TCP Gearup |

Overview

* How to think about send/recv

* About buffers

* How to debug/test in wireshark
* Implementation notes

* Any questions you have

“Applications”

v
Sockets API

TCP Stack

(Transport layer)

“Network stack”

TCP packets
(Protocol 6)

Test packets
(Protocol 0)

Roadmap

Milestone |
@ ° Start of your APl and TCP stack
* Listen and establish connections => create sockets/TCB

e TCP handshake
O . accept, connect, and start of Is REPL commands

@,

Roadmap

Milestone |l

© ° Basic sending and receiving using your sliding
window/send receive buffers

» Plan for the remaining features

@,

Key resources

 Lecture 14: Send/recv basics

* Lecture 15: How sliding window works, retransmissions, zero-window
probing

» HW3: Do it sooner rather than later—it will help!

« Testing and tools stuff: “TCP getting started” and “Testing with
Wireshark” in the docs

[More info: “Socket APl example” in docs]

Sending and receiving: AP

VWrite (“s” command)
* Input: normal socket, data to send

 Loads data into send buffer
 Block if send buffer is full

VWrite (“r” command)

* Input: normal socket, buffer for received data
» Read from recv bufter, write to app buffer
 Block if recv buffer empty

« Return: number of bytes read

Demol

Your bufters

* Should use a

* You get to decide on mechanics
— How to keep track of read/write pointers
— How to translate between sequence numbers => buffer indices

* You MAY use a library, but you should decide if this is what
you want

For detailed info

=> RFC9293 Sec 3.3: what all the variables mean
— Lecture 15: detailed breakdown of how to use buffers

https://en.wikipedia.org/wiki/Circular_buffer

What happens in the TCP stack?

Your TCP stack will have some threads—you decide what they do

When you get a new packet...
=> Look up 4-tuple in socket table => find socket struct

=> Socket struct => all your per-connection TCP state
(buffers, sequence numbers, etc....)

What to do with each segment? RFC%293 Sec 3.7.10 is your friend
=> + our modifications in “TCP notes” docs

Implementing Vread/VWrite

Performance requirement: send/recv process MUST be event driven
— No time.Sleep
— No busy-waiting

Implementing Vread/VWrite

Performance requirement: send/recv process MUST be event driven
— No time.Sleep

— No busy-waiting

Where does this apply?
« REPL: s, r, sf, rf
* VRead/VWrite

« Deciding when to send, or check for new data
* Retransmissions

Implementing VRead/VWrite

Performance requirement: send/recv process MUST be event driven
— No time.Sleep

— No busy-waiting

Where does this apply?
« REPL: s, r, sf, rf
* VRead/VWrite

« Deciding when to send, or check for new data
* Retransmissions

[=> Channels, condition variables, etc. are your friends }

Channels?

How to test TCP

:5000 :5001 H :5002

10.0.0.1 10.0.0.2 10.1.0.1 10.1.0.2

Usetful wireshark mechanics
« SEQ/ACK analysis

* Follow TCP stream
 Validating the checksum

Note: watching traffic in wireshark works differently in this project!
=> See "TCP getting started” guide for details

16

0 8
[he TCP checksum

... is pretty weird

Computing the TCP checksum involves making a
“pesudo-header” from TCP header + IP header fields:

0 8 16
[he TCP checksum

... is pretty weird

Computing the TCP checksum involves making a
“pesudo-header” from TCP header + IP header fields:

TCP pseudo-header for checksum computation (IPv4)
Bit offset 4-7 8-15
0 Source address
32 Destination address
64 Protocol TCP length
96 Source port Destination port
128 Sequence number

160 Acknowledgement number

192 Data offset | Reserved Flags Window

224 Checksum Urgent pointer
256 Options (optional)

256/288+ Data

[:> See the TCP-in-IP example for a demo of how to compute/verify it }

Reference implementation

* Our implementation of TCP
» Try it and compare with your version!

Note: we're using a new reference this year (after 8+ years!)
« We've tested as best we can, but there may be bugs
« See Ed FAQ, docs FAQ for list of known bugs

* Let us know if you have issues!

Reference implementation

* Our implementation of TCP
» Try it and compare with your version!

Note: we're using a new reference this year (after 8+ years!)
« We've tested as best we can, but there may be bugs
« See Ed FAQ, docs FAQ for list of known bugs

* Let us know if you have issues!

the spec wins-—don’t propagate buggy behavior

L = If the spec disagrees with the reference implementation, }
(please help us find any discrepancies!)

Custom vnet_run configurations

oadmap

Final deadline
© ° Retransmissions (+ computing RTO from RTT)

» Zero-window probing
e Connection teardown
O . Sending and receiving files (sf, rf)

Where to get more info

F [Our docs: “REPL commands” spec }

| Sockets API I { Our docs: “Socket API” example J

Where to get more info

F { Our docs: “REPL commands” spec }

Sockets API { Our docs: “Socket API” example J
<
é |

L- TCP-in-IP example (how to make/parse packets) }

- |IP docs

API for sockets: abstraction for creating and using TCP
connections

Example: Go's socket API
conn, err := net.Dial(“tcp”, “10.0.0.1:80”)

someBuf := make([]byte, . . .)
conn.Write(someBuf)

\4
Sockets API

. TCP Stack
Example: our socket API (yours can look different) (Transport layer)
conn, err := tcpstack.VConnect(addr, port)

someBuf := make([]byte, . . .)
conn.VWrite(someBuf)

VListen(port) // Listen on a port
VConnect(addr, port) // Connect to a socket

VAccept(. . .) // Accept new connections (more on this later)
VWrite(. . .) // Send on a socket

VRead(. . .). // Recv on a socket

VClose(. . .) // Close a socket

REPL commands: how we'll test your

=> Think of these like “applications” that use your
socket AP

// Basic stuff (test your API)

a Listen on a port; accept new connections £
c Connect to a TCP socket Eﬁfui or 1
1s List sockets llestone

s Send on a socket
r Receive on a socket

cl Close socket
// Ultimate goal

sf Send a file
rf Receive a file

Connection setup API: recap

VConnect

« "“Active OPEN" in RFC

* |nitiates new connection, returns normal socket
 Blocks until connection is established, or times out

VListen

« “Passive OPEN" in RFC

« Returns new

VAccept

* Input: a

* Blocks until a client connection is established
¢ Returns new normal socket

[How exactly you implement this is up to you, but your API should have calls like this 1
(This isn't arbitrary—it matches what the kernel API looks like)

Think back to your Snowcast server...

// Create listen socket (bind)

1istenConn,<gfr := net.ListenTCP("tcp4", addr)
for { | , g Listen socket
// Wait for a client to connect
clientConn, err := listenConn.Accept()
if err !'= ni
// -
}
// -

go handleClient(clientConn)

}

func handleClient (conn net.Conn)
conn.Read(. . .)
}

Why separate listen and accept?
=> Need to be able to handle multiple client connections!

Your "a” command will look similar...

func ACommandREPL() { // Runs as separate thread/goroutine

// Create listen socket (bind)

listenConn, err := tcpstack.VListen(port)
for {
// Wait for a client to connect
clientConn, err := listenConn.VAccept()
if err !'= nil {
// -
s

// Store clientConn to use by other REPL commands

Ways to build the AP | Moreinfo: "Socket APl example” indocs |

conn, err := tcpstack.VConnect(addr, port)

éoﬁn:VWrite(someBuf)
Go-style
» VConnect/VCccept/VListen return structs for normal/listen sockets
 Other functions (VAccept, VWrite, ...) are methods on these structs
* In REPL: map socket ID => struct

int sock_fd = VConnect(addr, port)
VWEi%e(sock_Fd, some_buffer)

C-style

« VConnect/VCccept/VListen return numbers (like file descriptors)
 Other functions (VAccept, VRead, ...) take socket number as argument
* In TCP stack: map socket ID => struct

[=> How you implement this is up to you (don’t even need to pick one of these)! J

Building TCP packets

Sequence Number
Acknowledgement Number
Data B$
Gitsat| Reserved B EEITL windowsize |

e MUST use standard TCP header

» Encapsulation: TCP packet => payload of virtual IP packet
* Once again, you don’t need to build/parse this yourself

= See the for a demo on how to build/parse a TCP header
(mostly uses same libraries as before)

https://github.com/brown-csci1680/lecture-examples/tree/main/tcp-demo

Closing thougnts

* Use your milestone time wisely!

* Wireshark is the best way to test—use it!

» Stuck? Don't know what's required? Just ask!
(And see Ed FAQ)

[We are here to help! }

Socket

tcp 1.2.3.4 12345 5.6.7.8 (normal struct)

tcp * 22 * (listen struct)

| |

Key: 5-tuple of (local IP, local port, remote IP, remote port, protocol) VaIlIJ(e:tlnfo about
socke

(state, buffers, ...)

When you receive a TCP packet

» First, check for a match on the 5-tuple
* Then, check for any open listen sockets

> Ls

SID LAddr LPort RAddr RPort Status
0 0.0.0.0 9999 0.0.0.0 0 LISTEN
1 10.1.0.2 9999 10.0.0.1 580060 ESTABLISHED
2 10.1.0.2 9999 10.0.0.1 23234 ESTABLISHED
3 10.1.0.2 9999 10.0.0.1 55434 ESTABLISHED

TCP Header

0 31

Sequence Number

Acknowledgement Number

Data RIS
Otinay | Reserved |BEEEYT windowsize

Initial
sequence

Sequence numbers
(Circumference = 0 to 2*32 slots)

Data received, acknowledged,
but not yet delivered to application

Window
shifts

Receiver's window
(Allocation buffer)
Up to 2*16-1 slots

................. > unusual event
=3 client/receiver path
—> server/sender path

LISTEN/-¢

(Step 2 of the 3-way-handshake) SYN/SYN+ACK

SYN

RECEIVED | oo, SYN/SYN+ACK (simultaneous open) ..

CONNECT/SYN (Step 1 of the 3-way-handshake)

A CLOSE/-
i CLOSE/-

LISTEN

i

SEND/SYN

Data exchange occurs

{ CLOSE/FIN

CLOSE/FIN

FIN WAIT 1

FIN WAIT 2

FIN+ACK/ACK i

FIN/ACK

- -

- (Step 3 of the 3-way-handshake)

FIN/ACK

Active CLOSE Passive CLOSE

CLOSE WAIT

CLOSING

¢ ACK/-

Y

CLOSE/FIN

TIME WAIT

Timeout

Sample Topologies

Some example networks you can test with...

// Our example API (sending side)
addr, err := netip.ParseAddr(“1.2.3.4”)

conn, err := ipstack.VConnect(addr)

someBuf := make([]byte, . . .)
conn.VWrite(someBuf)
conn.Vclose()

// Our example API (receiving side)
listenConn, err := ipstack.VListen(9999) // Listen on

clientConn, err := listenConn.VAccept()
clientConn.VRead(someBuf)
clientConn.Vclose()

=> This is not the only way to do the API,
more on this later

