
Don’t panic: TCP gearup III

Overview

• Final TCP stuff
• Any questions you have

Roadmap

Milestone I
• Start of your API and TCP stack
• Listen and establish connections => create sockets/TCB
• TCP handshake
• accept, connect, and start of ls REPL commands

Roadmap

Milestone II
• Basic sending and receiving using your sliding

window/send receive buffers
• Plan for the remaining features

Roadmap

Final deadline
• Retransmissions (+ computing RTO from RTT)
• Out-of-order packets
• Sending and receiving files (sf, rf)
• Zero-window probing
• Connection teardown

a

Sendfile/Recvfile
Using your socket API, send/recv a file

Sendfile
• Open a file, VConnect, call VWrite in a loop

Recvfile
• Listen on a port, Open a file, call VRead in a loop

=> This is the ultimate test: your implementation should be
similar to how you’d use a real socket API!

UP to IMB

Demo!

A common thing to notice when you start sf/rf, sometimes you
start seeing bugs from IP

 => Run reference with YOUR router, OUR HOST

	 => Could help you root out a problem at the interface level

So how do we get there?

Relevant materials

• Lecture 15 (10/24): Sliding window, retransmissions, zero window
probing

• Lecture 16 (10/29): connection teardown

• Testing and tools stuff: ”Getting started” in TCP docs
=> Can configure reference to drop packets
=> Some more testing notes soon (mostly mirroring what’s here)

Retransmissions

Usually, make a “retransmission queue”
• When segment sent, add segment to queue with some

metadata
=> What to store? You decide!

More info: Lecture 15, RFC6298

WHENYOU SENT IT

Retransmissions

Usually, make a “retransmission queue”
• When segment sent, add segment to queue with some

metadata
=> What to store? You decide!

• Start RTO timer
• When you get an ACK, reset

More info: Lecture 15, RFC6298

ONE THEN PEN SOCKET

Retransmissions

Usually, make a “retransmission queue”
• When segment sent, add segment to queue with some

metadata
=> What to store? You decide!

• Start RTO timer, reset on ACK

When RTO timer expires
• Retransmit earliest unACK’d segment
• RTO = 2 * RTO (up to max
• If no data after N retransmits => give up, terminate connection

More info: Lecture 15, RFC6298

Þ RFC6298 is your friend! Use it!
(edge cases, etc.)

S R

F
NXT EXPECTING

Earl Arman
1

2

in i
For

ifs

Sending side

Retransmission queue:

 - Put something in the
queue for each
segment (you decide
what)

 - Remove when you
get an ACK

Receiving side

Early arrivals queue

 - Add segments received out of
order

 - When you receive next expected
segment, check the queue

Scratch notes for retransmissions/early arrivals: see recording for a live drawing, lecture
15 for more

RTO?

RTO = Retransmission Timeout (RTO)
=> Based on expected RTT: “how long until you SHOULD get an ACK?”

When you get an ACK, update RTO

More info: Lecture 15, RFC6298

Example upper/lower bounds
RTOmin ~= 100ms
RTOmax ~= 5sec

114IRTTT ONE MEASUREMENT

SR TT SMOOTHED RTT

WE bled AN

	

RTO?

RTO = Retransmission Timeout (RTO)
=> Based on expected RTT: “how long until you SHOULD get an ACK?”

When you get an ACK, update RTO
 => Smoothed weighted moving average of recent RTTs

More info: Lecture 15, RFC6298

Example upper/lower bounds
RTOmin ~= 100ms
RTOmax ~= 5sec

RTT a KTTnew t I DSRI
a
p

Computing RTO
Strategy: measure expected RTT based on ACKs received

Use exponentially weighted moving average (EWMA)
• RFC793 version (“smoothed RTT”):

SRTT = (⍺ * SRTTLast) + (1 - ⍺)* RTTMeasured
RTO = max(RTOMin, min(β * SRTT, RTOMax))

⍺ = “Smoothing factor”: .8-.9
β = “Delay variance factor”: 1.3—2.0
RTOMin = 1 second

RFC793, Sec 3.7
RFC6298 (slightly more complicated,

also measures variance)

UPDATE on perf requirement
Performance requirement: send/recv process MUST be event driven

– No busy-waiting
– time.Sleep MUST NOT BLOCK SEND/RECV process

Where does this apply?
• REPL: s, r, sf, rf
• VRead/VWrite
• Deciding when to send, or check for new data
• Retransmissions

=> Channels, condition variables, etc. are your friends

*Okay to use sleep, time.Ticker to have separate
thread trigger an event, like retransmissions

Out of order segments

Usually, make a “early arrival queue”
• When segment arrives, add to queue if it’s not the next segment

=> What to store? You decide!

• As more segments arrive, check the top of the queue to see if it
fills in any gaps

More info: Lecture 15

Zero window probing
When receiver’s window is full, sender enters zero window probing mode
• Stop sending segments
• At a periodic intervals, send 1 byte segments until receiver sends back

window > 0 bytes

More info: Lecture 15

GWP

Send 1 byte of real data (whatever is
next in send buffer)

The next page has an example for zero window probing and
retransmissions—it’s a bit more involved than we discussed in
the gearup but should be useful for seeing how it works and
interacts with your buffers.

After that is an annotated example of how zero-window probing
should look in wireshark

S ASSUME SEGMENT SIZE I R
ZWP EXAMPLE
NXT

ii.it

i
f.t

IR
FEMPTYhe

18REF
READBY

30 SEEIACK t wa

YSEG3 AC I L

ii iiiiiiiiiiii
i i.in

41
2 3 45

d
ᵗ

IET.IE Is
Eg not

i ii
I

S R

SEE Pro

Iii EEEE.IE1EEkEEinEE non
APP CALLS
CONNREAD
READS 2 BYTES

NIHE

SEQ 3 4 5 6
W N L L

43

SEE S Pro not

Faith 4k
3 4 56

ST ZEROWINDOWPROBES ARE ALWAI ONE
BYTEREGARDLESS OFTHESEGMENT SIZE IN THIS EXAMPLE

WE HAVE BEEN USING 1BYTESEGMENTSTHROUGHOUT THISIS COINCIDENCE

Zero window probing
When receiver’s window is full, sender enters zero window probing mode
• Stop sending segments
• At a periodic intervals, send 1 byte segments until receiver sends back

window > 0 bytes

How to test?
• On one side, listen on a port: a 9999
• On other side, send a file

More info: Lecture 15

Custom vnet_run configurations

2

if

f

Part 1: Window fills up, start sending probes

Zero-window probing: in wireshark

(Try it with the reference!)

Pkts 127-130: Sending segments as normal
=> eventually fills up window

(Okay for wireshark to flag this as "ACKed unseen segment")

Pkt 139 (ACK for probe packet 138): space is available, so ACK now has
updated window size. Sender can resume sending now!

Pkt 131: Receiver ACKs with WIN=0
=> sender still has data to send, so
it must start probing

Pkts 140-143: Sender resumes sending, eventually fills up window again

Note: In this version, sender resends the probe byte (seq 65536) as part of first
segment. You're not required to emulate this--it's okay (and technically more efficient) to
resume from seq 65537 instead. Nick will update the reference to fix this next year :)

Pkt 132-138: Sender periodically sends 1-byte probes =>
receiver ACKs with updated window
Things to note:
 - Probe is contains the NEXT byte in the data stream (here, seq
65536). This is purposely outside the receiver's window!

 - Probe has length 1

 - Receiver ACK sends ACK, but can't accept the segment (ACK
number doesn't change from 131, when window was full)

Part 2: Recovery: Eventually, receiver reads some data, freeing up window space
(in this example, h2 reads 4096 bytes)

Connection teardown
4-way connection close process => see the lecture for details

• VClose just starts the connection close process
 => TCB not deleted until connection goes to CLOSED state

More info: Lecture 16

Testing with packet loss
New REPL command in vrouter reference (out soon):

> drop 0.01 // Drop 1% of packets
> drop 0.5 // Drop 50% of packets (way too aggressive)

> drop 1 // Drop ALL packets (equivalent to “down”)

> drop 0 // Drop no packets

Also: can set by running vrouter with --drop

i

Custom vnet_run configurations

With ~30s of work, you can set up a config file for vnet_run to easily let you...

 - Run custom configurations of vhost/vrouter (your h1, reference h2, etc.)

 - Automatically configure drop rate at startup (save on typing!)

 - Turn on logging

 => See recording for a demo (also "Custom vnet_run configurations" in
 Docs > "Tools and resources)

How to test TCP

R1 if1H1 if0if0 if0

:5000
10.0.0.1

:5001
10.0.0.2

:5002
10.1.0.1

:5003
10.1.0.2

Note: watching traffic in wireshark works differently in this project!
=> See Gearup II, ”TCP getting started” guide for details

H2

Useful wireshark mechanics
• SEQ/ACK analysis
• Follow TCP stream
• Validating the checksum

More docs coming soon!

x x

Reference implementation

• Our implementation of TCP
• Try it and compare with your version!

Note: we’re using a new reference this year (after 8+ years!)
• We’ve tested as best we can, but there may be bugs
• See Ed FAQ, docs FAQ for list of known bugs
• Let us know if you have issues!

Þ If the spec disagrees with the reference implementation,
the spec wins-–don’t propagate buggy behavior

(please help us find any discrepancies!)

Do not underestimate these last parts--it will take time to
debug and test them.

When stuck, take a break and come back to it. It will help.
 => Do NOT wait until the last minute.

Closing thoughts

Don’t panic.

TCP due

You are
here

I

Breathe

The TCP checksum
… is pretty weird

Computing the TCP checksum involves making a
“pesudo-header” from TCP header + IP header fields:

Þ See the TCP-in-IP example for a demo of how to compute/verify it

IP stack

TCP Stack

Sockets API

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

Where to get more info

Our docs: “REPL commands” spec

Our docs: ”Socket API” example

Guidelines: “TCP notes” in our docs
 - Links to relevant RFCs (eg. RFC9293)
 - Our modifications/notes on the RFCs

- TCP-in-IP example (how to make/parse packets)
- IP docs

Unfilled buffer

Data received,but not acknowledged

Data receive
d, ackn

owledged

and delive
red to applica

tion

Sequence numbers
(Circumference = 0 to 2^32 slots)

Data received, acknowledged,
but not yet delivered to application

Initial
sequence
number

Receiver's window
(Allocation buffer)
Up to 2^16-1 slots

Window
shifts

rw
nd advertisem

ent

CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN
RECEIVED

SYN
SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path
server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK
(Step 3 of the 3-way-handshake)

Data exchange occurs
ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN+ACK/ACK

ACK/-

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSE

ACK/-

ACK/-

