Don't panic: TCP gearup

Overview

* Final TCP stuff
* Any questions you have

Roadmap

Milestone |

@ ° Start of your APl and TCP stack
e Listen and establish connections => create sockets/TCB
 TCP handshake

o . accept, connect, and start of Is REPL commands

O

Roadmap

Milestone |

© ° Basic sending and receiving using your sliding
window/send receive buffers

 Plan for the remaining features

O

Roadmap

Final deadline
* Retransmissions (+ computing RTO from RTT)

» Out-of-order packets

« Sending and receiving files (sf, rf)
» Zero-window probing

« Connection teardown [CL>

Sendfile/Recviile

Using your socket API, send/recv a file

Sendfile
« Open a file, VConnect, call VWrite in a loop

P ro up

* Listen on a port, Open a file, call VRead in a loop

Recvfile

=> This is the ultimate test: your implementation should be
rritaTto ow you'd use a real socket API!

Demol!

A common thing to notice when you start sf/rf, sometimes you
start seeing bugs from IP
=> Run reference with YOUR router, OUR HOST

=> Could help you root out a problem at the interface level

So how do we get there?

Relevant materials

« Lecture 15 (10/24): Sliding window, retransmissions, zero window

probing — -
 Lecture 16 (10/29): connection teardown

\

« Testing and tools stuff: “Getting started” in TCP docs
=> Can configure reference to drop packets l

=> Some more testing notes soon (mostly mirroring what's here)

st [Moreinfo: Lecture 15, RFC6298 |
Retransmissions

Usually, make a “retransmission queue”

* When segment sent, add segment to queue with some
metadata
=> What to store? You decide!

Ly ket oy stve (T

et [Moreinfo: Lecture 15, RFC6298 |
Retransmissions

Usually, make a “retransmission queue”

* When segment sent, add segment to queue with some
metadata

=> \What to store? You decide!

* Start RTO timer =2 OWE Tkt PFEyv [OckEET.
* When you get an ACK, reset

et [Moreinfo: Lecture 15, RFC6298 |
Retransmissions

Usually, make a “retransmission queue”

* When segment sent, add segment to queue with some
metadata
=> \What to store? You decide!

e Start RTO timer, reset on ACK

)
When RTO timer expires)| z/ 7@:‘
» Retransmit earliest unACK'd segment |
+ RTO =2 * RTO (up to max)
 |f no data after N retransmits => give up, terminate connection

— RFC6298 is your friend! Use it!
(edge cases, etc.)

Scratch notes for retransmissions/early arrivals: see recording for a live drawing, lecture

15 for more

Sending_side

Retransmission queue:
- Put something in the

queue for each

segment (you decide

what)

- Remove when you

get an ACK

¢

L e

T

0
k\‘

' D

\\%

—

t

—

N&

AcKL'

AC#L

K

Receiving side

Early arrivals queue

- Add segments received out of
order

- When you receive next expected
segment, check the queue

Wpr adreTmve(2)

[;AILL‘/ /MZ]"M;/A"}
(

0 00 ©

RTO? | Moreinio: Lecre 15Jfrceass|

7

RTO = Retransmission Timeout (RTO) A WHsv 70
=> Based on expected RTT: “how long until you SHOULD get an ACK?" Q;diz;’//
7oV,

/ (
When you get an ACK, update RTO m(\

|~

Example upper/lower bounds }

4) Lt emEd "QVG ERTOmin ~=100ms

T = OWE JEASUMsrnT

~~

RTOmax ~= 5sec

RTO? [Moreinfo: Lecture 15, RFC6298]

RTO = Retransmission Timeout (RTQO)
=> Based on expected RTT: “how long until you SHOULD get an ACK?"

When you get an ACK, update RTO
=> Smoothed weighted moving average of recent RTTs

eI AL(Z?”?‘A/]M) + (- X)SpTT

K/ Example upper/lower bounds
ﬁ RTOmin ~= 100ms

RTOmax ~= 5sec

Computing RTO

Strategy: measure expected RTT based on ACKs received

Use exponentially weighted moving average (EWMA)

« RFC793 version (“smoothed RTT"):
SRTT = (o * SRTT o) + (1 - &)* RTTpteasured
RTO = max(RTOpwin, min(B * SRTT, RTOpay)
- S
a = “Smoothing factor”: .8-.9
B = "Delay variance factor”: 1.3—2.0

RTOy:, = 1 second
RFC793, Sec 3.7

RFC6298 (slightly more complicated,
also measures variance)

UPDATE on perf requirement

Performance requirement: send/recv process MUST be event driven

— No busy-waiting
— time.Sleep MUST NOT BLOCK SEND/RECV process

*Okay to use sleep, time.Ticker to have separate

thread trigger an event, like retransmissions

Where does this apply?
e REPL: s,r, sf, rf
 VRead/VWrite

« Deciding when to send, or check for new data

[=> Channels, condition variables, etc. are your friends 1

| Moreinfo: Lecture15 |
Out of order segments

Usually, make a “early arrival queue”

* When segment arrives, add to queue if it's not the next segment
=> What to store? You decide!

* As more segments arrive, check the top of the queue to see if it
fills in any gaps

Zero window probing (7 eSS

When receiver’s window is full, sender enters zero window probing mode

* Stop sending segments
« At a periodic intervals, send 1 byte segments until receiver sends back

window > 0O bytes /
) Ste tey:

Send 1 byte of real data (whatever is /—/542
ack VP

next in send buffer)

The next page has an example for zero window probing and
retransmissions—it’s a bit more involved than we discussed in
the gearup but should be useful for seeing how it works and
interacts with your buffers.

After that is an annotated example of how zero-window probing
should look in wireshark

_é ASSUAE . Seemnr SnE =) Q ZUJ?D 57(/4/@ DE

—_— /Y

Sptece.

;EQ N

[BYTES N Fugur =« wmbns g
= Sempen. avsr srop)

. u))ﬂ=1
oz] ALKS e
@ SL’&] - _
= ‘ WY E L L

t RCY BUF EMPTY
—No DMTA READ By
Arp T

;CQ | 2 3 Y §...

) — 24&/ o Lg”
& < (D:fi ;)r AFFECT
- é- - »
7 Q /AC/: & v, w,/
ronsovr! A J
5/ U))U - 0/ ~
ce 2 L.
@ CAV wow ACk ﬁiq / 3 1 5
iz g,
PBvFFEN IS Pt Wi 7(/ E L L

porren it Fue!

@ 56({: ’/ACK;S/ /=0 ___— 7@85 0/35/‘1350/ ,?HE'VEK
SENDE A ACK.“(MIT; LIV e HANEED)

,4?/9 cALLS
17 Colm ZEAD ()
> gdnS 2 BrEL
”/(/E”
M1
wnJ L L
A
A ng
M
- “ ge r
Iy Ac¢ =) v, ”:‘/

NMwow | 2 © @

L8

K LOTE Zeno comgod FroseC ARE ALwAS OmE

P Prchepiest OF The Stomewr Size. fu 7y Exae

VST
OF ME Beew Cowie (-85 Seemenit THoVEN T —THU Lr'd Canc/Devel! /

° ° [Moreinfo: Lecwre s]
Zero window probing

When receiver’s window is full, sender enters zero window probing mode
* Stop sending segments

« At a periodic intervals, send 1 byte segments until receiver sends back
window > 0O bytes

How to test? \
* On one side, listen on a port: a 9999
« On other side, send a file

Custom vnet_run configurations

Zero-window probing: in wireshark
(Try it with the reference!)

Part 1: Window fills up,_start sending_probes

Pkts 127-130: Sending segments as normal Pkt 131: Receiver ACKs with WIN=0
=> eventually fills up window => sender still has data to send, so
it must start probin

63582 [ACK] Se =1 Ack—64513 Win= 1023 Len
N 0 Se =65536 Win=0 Len=0
Seq=65536 Ack=1 65535 Len=1 [TCP segment of
9 - 63582 [A) 0
65536 Ack=1 Win=
- 63582 [ACK]
536 Ack=1 Wi
63582 [ACK] Seq=1
Ack=1 Win=65535

.2 10.0.0. TCP 82 9999 - 63582 [ACK] Seq=1 Ack=61777 Win=3759 Len=0
.2 10.0.0. TCP 82 9999 - 63582 [ACK] Seq=1 Ack=62465 Win=3071 Len=0
o2 .0.0. 82 9999 - 63582 [ACK] Seq=1 Ack=63825 Win=1711 Len
o2 .0.0. 82 9999 -

8 R 7

N =N

) = N = N 1 [

HNENRE

N = N

Pkt 132-138: Sender periodically sends 1-byte probes =>
receiver ACKs with updated window

Things to note:

- Probe is contains the NEXT byte in the data stream (here, seq
65536). This is purposely outside the receiver's window!

- Probe has length 1

- Receiver ACK sends ACK, but can't accept the segment (ACK
number doesn't change from 131, when window was full)

Part 2. Recovery: Eventually, receiver reads some data, freeing up window space
(in this example, h2 reads 4096 bytes)

Pkt 139 (ACK for probe packet 138): space is available, so ACK now has
updated window size. Sender can resume sending now!
(Okay for wireshark to flag this as "ACKed unseen segment")

82 [TCP ACKed unseen segment] 9999 - 635 [ACK] Seq=1 Ack=65537 Win=4095 Len=0
- —65535 Len=1360 [TCP segment of a reassembled F
TCP 14.. 63582 - 9999 [ACK] Seq=66896 Ack=1 Win=65535 Len=1360 [TCP segment of a reassembled F
14.. 63582 - 9999 [ACK] Seq=68256 Ack=1 Win=65535 Len=1360 [TCP segment of a reassembled F
Window Full] 63582 - 9999 [ACK] Seq=69616 Ack=1 Win=65535 Len=16 [TCP segment o
- 63582 [ACK] Seq=1 Ack=66896 Win=2736 Len=0
- 63582 [ACK] Seq=1 Ack=68256 Win=1376 Len=0
- 63582 [ACK] Seqg=1 Ack=69616 Win=16 Len=0
ZeroWindow] 9999 - 6)50; [ACK] Seq=1 Ack=69632 Win=0 Len=0

~oWindowProbe] 63582 - 9999 [ACK] Seq=69632 Ack=1 Win= 65535 Len=1 [TCP segment
/rroWlndouProb(Ank] [TCP ZF!OHlHdOH] 9909 - 63582 [ACK] Seq=1 Ack=69632 Win=0 L

Ll o © ©

Jo o o — —[S]

) DEIOSEN] — . |
Slo © ofe] © © ofs)

© - [

S 1=
= N (S) ININENY

=
P © ©

Pkts 140-143: Sender resumes sending, eventually fills up window again

Note: In this version, sender resends the probe byte (seq 65536) as part of first
segment. You're not required to emulate this--it's okay (and technically more efficient) to

resume from seq 65537 instead. Nick will update the reference to fix this next year :)

: [Moreinfo Lecture 16 |
Connection teardown

4-way connection close process => see the lecture for details

* VClose just starts the connection close process
=> TCB not deleted until connection goes to CLOSED state

esting with packet loss

New REPL command in vrouter reference (out soon):

> drop 0.01 // Drop 1% of packets
> drop 0.5 // Drop 50% of packets (way too aggressive)

> drop 1 // Drop ALL packets (equivalent to “down”)
=

> drop @ // Drop no packets

[Also: can set by running vrouter with --drop
——

Custom vnet_run configurations

With ~30s of work, you can set up a config file for vnet_run to easily let you...
- Run custom configurations of vhost/vrouter (your h1, reference h2, etc.)
- Automatically configure drop rate at startup (save on typing!)
- Turn on logging

=> See recording for a demo (also "Custom vnet_run configurations" in
Docs > "Tools and resources)

How to test TCP | Moredocscomingsoon |

—:5000 /\ :5001ﬂ 4e10[0) ‘ : :5003

10.0.0.1 10.0.0.2 10.1.0.1 10.1.0.2

Useful wireshark mechanics
« SEQ/ACK analysis

* Follow TCP stream

* Validating the checksum

Note: watching traffic in wireshark works differently in this project!
=> See Gearup Il, "TCP getting started” guide for details

Reterence implementation

* Our implementation of TCP
 Try it and compare with your version!

Note: we're using a new reference this year (after 8+ years!)
« We've tested as best we can, but there may be bugs
* See Ed FAQ, docs FAQ for list of known bugs

* Let us know if you have issues!

the spec wins-——don't propagate buggy behavior

[= If the spec disagrees with the reference implementation, }
(please help us find any discrepancies!)

Closing thoughts

Do not underestimate these last parts--it will take time to
debug and test them.

When stuck, take a break and come back to it. It will help.
=> Do NOT wait until the last minute.

[Don't panic. }

Breathe

i am a tiny cactus
and i believe

in you

you can do the tihg |

16

The TCP checksum

. is pretty weird

Computing the TCP checksum involves making a
“pesudo-header” from TCP header + IP header fields:

TCP pseudo-header for checksum computation (IPv4)
Bit offset 4-7 8-15
0 Source address
32 Destination address
64 Protocol TCP length
96 Source port Destination port
128 Sequence number
160 Acknowledgement number
192 Data offset | Reserved Flags Window
224 Checksum Urgent pointer

256 Options (optional)

256/288+ Data

[:> See the TCP-in-IP example for a demo of how to compute/verify it }

Where to get more info

F { Our docs: “REPL commands” spec }

Sockets AP { Our docs: “Socket API” example]
<
< a TCP-in-IP example (how to make/parse packets)
L- IP docs

Initial
sequence

Sequence numbers
(Circumference = 0 to 232 slots)

Data received, acknowledged,
but not yet delivered to application

Window
shifts

Receiver's window
(Allocation buffer)
Up to 2*16-1 slots

CONNECT/SYN (Step 1 of the 3-way-handshake)

> unusual event
———3 client/receiver path (Start)

——3 server/sender path LISTEN/- A
¢ i CLOSE/-
(Step 2 of the 3-way-handshake) SYN/SYN+ACK ;

LISTEN
A s
Y 5

SYN :
RECEIVED SYN/SYN+ACK (simultaneous open)

SEND/SYN

Data exchange occurs

- -
i o (Step 3 of the 3-way-handshake)

{ CLOSE/FIN
: CLOSE/FIN FINJACK

| Active CLOSE| |Passive CLOSE|

Y

CLOSE/FIN

FIN/ACK
FIN+ACK/ACK :

{ ACK/-

FIN WAIT 2 Feeiineennaenanae : TIME WAIT

FIN/ACK

Timeout

(Go back to start)

