Don't panic: TCP gearup |l

Overview

* Final TCP stuft
* Any questions you have

Roadmap

Milestone |
@ ° Start of your APl and TCP stack
* Listen and establish connections => create sockets/TCB

e TCP handshake
O . accept, connect, and start of Is REPL commands

@,

Roadmap

Milestone |l

© ° Basic sending and receiving using your sliding
window/send receive buffers

» Plan for the remaining features

O

Roadmap

Final deadline

Retransmissions (+ computing RTO from RTT)
Out-of-order packets

Sending and receiving files (sf, rf)
Zero-window probing

Connection teardown

Sendtile/Recviile

Using your socket API, send/recv a file

Sendfile
* Open a file, VConnect, call VWrite in a loop

Recvfile
» Listen on a port, Open a file, call VRead in a loop

=> This is the ultimate test: your implementation should be
similar to how you'd use a real socket API!

Demol

So how do we get there?

Relevant materials

e Lecture 15 (10/24): Sliding window, retransmissions, zero window
orobing

e Lecture 16 (10/29): connection teardown

« Testing and tools stuff: “Getting started” in TCP docs

=> Can configure reference to drop packets
=> Some more testing notes soon (mostly mirroring what's here)

o | Moreinfo: Lecture 15, RFC6298 |
Retransmissions

Usually, make a “retransmission queue”

* When segment sent, add segment to queue with some
metadata
=> What to store? You decide!

Retransmissions

Usually, make a “retransmission queue”

* When segment sent, add segment to queue with some
metadata
=> What to store? You decide!

* Start RTO timer
« When you get an ACK, reset on ACK

[More info: Lecture 15, RFC6298

Retransmissions

Usually, make a “retransmission queue”

* When segment sent, add segment to queue with some
metadata
=> \What to store? You decide!

e Start RTO timer, reset on ACK

When RTO timer expires

* Retransmit earliest unACK'd segment

« RTO =27*RTO (up to max)

* If no data after N retransmits => give up, terminate connection

— RFC6298 is your friend! Use it!
(edge cases, etc.)

RTO? | Moreinfo: Lecture 15, RFC6298 |

RTO = Retransmission Timeout (RTO)
=> Based on expected RTT: “how long until you SHOULD get an ACK?”

When you get an ACK, update RTO

4 I

Example upper/lower bounds
RTOmin ~= 100ms

RTOmax ~= 5sec
\ J

RTO? | Moreinfo: Lecture 15, RFC6298 |

RTO = Retransmission Timeout (RTO)
=> Based on expected RTT: “how long until you SHOULD get an ACK?”

When you get an ACK, update RTO
=> Smoothed weighted moving average of recent RTTs

4 I

Example upper/lower bounds
RTOmin ~= 100ms

RTOmax ~= 5sec
\ J

Computing RTO

Strategy: measure expected RTT based on ACKs received

Use exponentially weighted moving average (EWMA)

« RFC793 version (“smoothed RTT"):

SRTT = (O(* SRTTLast) + (1 - O()* RTTI\/Ieasured
RTO = max(RTOp;in, min(B * SRTT, RTOpay)

a = “Smoothing factor”: .8-.9
B = “Delay variance factor”: 1.3—2.0

RTOw:, = 1 second
RFC793, Sec 3.7

RFC6298 (slightly more complicated,
also measures variance)

UPDATE on pert requirement

Performance requirement: send/recv process MUST be event driven

— No busy-waiting
— time.Sleep MUST NOT BLOCK SEND/RECV process

*Okay to use sleep, time.Ticker to have separate

thread trigger an event, like retransmissions

Where does this apply?
« REPL: s, r, sf, rf
* VRead/VWrite

« Deciding when to send, or check for new data

[=> Channels, condition variables, etc. are your friends }

_ Moreinfo: Lecture15 |
Out of order segments

Usually, make a “early arrival queue”

* When segment arrives, add to queue if it's not the next segment
=> What to store? You decide!

* As more segments arrive, check the top of the queue to see it it
fills in any gaps

Zero window probing L Moeioreuets]

When receiver's window is full, sender enters zero window probing mode
* Stop sending segments

» At a periodic intervals, send 1 byte segments until receiver sends back
window > 0 bytes

Zero window probing L Moeioreuets]

When receiver's window is full, sender enters zero window probing mode
* Stop sending segments

» At a periodic intervals, send 1 byte segments until receiver sends back
window > 0 bytes

How to test?

* On one side, listen on a port: a 9999
 On other side, send a file

: [Moreinfor Lecture 16|
Connection teardown

4-way connection close process => see the lecture for details

» VClose just starts the connection close process
=> TCB not deleted until connection goes to CLOSED state

How to test?

* Don't leave sendfile/recv file to the end--try to test as you go
— You WILL find bugs. Breathe. It's going to be okay.

* Try to test each part individually, as shown here

How to test?

* Don't leave sendfile/recv file to the end--try to test as you go
— You WILL find bugs. Breathe. It's going to be okay.

* Try to test each part individually, as shown here

Don’t be afraid to write some test code!
=> Eg. To test retransmissions, comment out your ACK
processing and see what happens

Testing with packet loss

New REPL command in vrouter reference (out soon):

> drop 0.01 // Drop 1% of packets
> drop 0.5 // Drop 50% of packets (way too aggressive)

> drop 1 // Drop ALL packets (equivalent to “down™)

> drop @ // Drop no packets

[Also: can set by running vrouter with --drop

Custom vnet_run configurations

How to test TCP Moredocscomingsoont |

:5001 ﬂ e10[0)% -

:5000
10.0.0.1 10.0.0.2 10.1.0.1 10.1.0.2

Useful wireshark mechanics
« SEQ/ACK analysis

e Follow TCP stream
 Validating the checksum

Note: watching traffic in wireshark works differently in this project!
=> See Gearup I, "TCP getting started” guide for details

Reference implementation

* Our implementation of TCP
» Try it and compare with your version!

Reference implementation

* Our implementation of TCP
» Try it and compare with your version!

Note: we're using a new reference this year (after 8+ years!)
« We've tested as best we can, but there may be bugs
« See Ed FAQ, docs FAQ for list of known bugs

* Let us know if you have issues!

Reference implementation

* Our implementation of TCP
» Try it and compare with your version!

Note: we're using a new reference this year (after 8+ years!)
« We've tested as best we can, but there may be bugs
« See Ed FAQ, docs FAQ for list of known bugs

* Let us know if you have issues!

the spec wins-—don’t propagate buggy behavior

L = If the spec disagrees with the reference implementation, }
(please help us find any discrepancies!)

Closing thoughts

Do not underestimate these last parts--it will take time to
debug and test them.

When stuck, take a break and come back to it. It will help.
=> Do NOT wait until the last minute.

[Don't panic. }

22

One more thing...

O~

| am a tiny cactus
and i believe

In you

you can do the tihg

16

0 8
[he TCP checksum

... is pretty weird

Computing the TCP checksum involves making a
“pesudo-header” from TCP header + IP header fields:

0 8 16
[he TCP checksum

... is pretty weird

Computing the TCP checksum involves making a
“pesudo-header” from TCP header + IP header fields:

TCP pseudo-header for checksum computation (IPv4)
Bit offset 4-7 8-15
0 Source address
32 Destination address
64 Protocol TCP length
96 Source port Destination port
128 Sequence number

160 Acknowledgement number

192 Data offset | Reserved Flags Window

224 Checksum Urgent pointer
256 Options (optional)

256/288+ Data

[:> See the TCP-in-IP example for a demo of how to compute/verify it }

Where to get more info

F [Our docs: “REPL commands” spec }

| Sockets API I { Our docs: “Socket API” example J

Where to get more info

F { Our docs: “REPL commands” spec }

Sockets API { Our docs: “Socket API” example J
<
é |

L- TCP-in-IP example (how to make/parse packets) }

- |IP docs

API for sockets: abstraction for creating and using TCP
connections

Example: Go's socket API
conn, err := net.Dial(“tcp”, “10.0.0.1:80”)

someBuf := make([]byte, . . .)
conn.Write(someBuf)

\4
Sockets API

. TCP Stack
Example: our socket API (yours can look different) (Transport layer)
conn, err := tcpstack.VConnect(addr, port)

someBuf := make([]byte, . . .)
conn.VWrite(someBuf)

VListen(port) // Listen on a port
VConnect(addr, port) // Connect to a socket

VAccept(. . .) // Accept new connections (more on this later)
VWrite(. . .) // Send on a socket

VRead(. . .). // Recv on a socket

VClose(. . .) // Close a socket

REPL commands: how we'll test your

=> Think of these like “applications” that use your
socket AP

// Basic stuff (test your API)

a Listen on a port; accept new connections £
c Connect to a TCP socket Eﬁfui or 1
1s List sockets llestone

s Send on a socket
r Receive on a socket

cl Close socket
// Ultimate goal

sf Send a file
rf Receive a file

Connection setup API: recap

VConnect

« "“Active OPEN" in RFC

* |nitiates new connection, returns normal socket
 Blocks until connection is established, or times out

VListen

« “Passive OPEN" in RFC

« Returns new

VAccept

* Input: a

* Blocks until a client connection is established
¢ Returns new normal socket

[How exactly you implement this is up to you, but your API should have calls like this 1
(This isn't arbitrary—it matches what the kernel API looks like)

Think back to your Snowcast server...

// Create listen socket (bind)

1istenConn,<gfr := net.ListenTCP("tcp4", addr)
for { | , g Listen socket
// Wait for a client to connect
clientConn, err := listenConn.Accept()
if err !'= ni
// -
}
// -

go handleClient(clientConn)

}

func handleClient (conn net.Conn)
conn.Read(. . .)
}

Why separate listen and accept?
=> Need to be able to handle multiple client connections!

Your "a” command will look similar...

func ACommandREPL() { // Runs as separate thread/goroutine

// Create listen socket (bind)

listenConn, err := tcpstack.VListen(port)
for {
// Wait for a client to connect
clientConn, err := listenConn.VAccept()
if err !'= nil {
// -
s

// Store clientConn to use by other REPL commands

Ways to build the AP | Moreinfo: "Socket APl example” indocs |

conn, err := tcpstack.VConnect(addr, port)

éoﬁn:VWrite(someBuf)
Go-style
» VConnect/VCccept/VListen return structs for normal/listen sockets
 Other functions (VAccept, VWrite, ...) are methods on these structs
* In REPL: map socket ID => struct

int sock_fd = VConnect(addr, port)
VWEi%e(sock_Fd, some_buffer)

C-style

« VConnect/VCccept/VListen return numbers (like file descriptors)
 Other functions (VAccept, VRead, ...) take socket number as argument
* In TCP stack: map socket ID => struct

[=> How you implement this is up to you (don’t even need to pick one of these)! J

Building TCP packets

Sequence Number
Acknowledgement Number
Data B$
Gitsat| Reserved B EEITL windowsize |

e MUST use standard TCP header

» Encapsulation: TCP packet => payload of virtual IP packet
* Once again, you don’t need to build/parse this yourself

= See the for a demo on how to build/parse a TCP header
(mostly uses same libraries as before)

https://github.com/brown-csci1680/lecture-examples/tree/main/tcp-demo

Closing thougnts

* Use your milestone time wisely!

* Wireshark is the best way to test—use it!

» Stuck? Don't know what's required? Just ask!
(And see Ed FAQ)

[We are here to help! }

Socket

tcp 1.2.3.4 12345 5.6.7.8 (normal struct)

tcp * 22 * (listen struct)

| |

Key: 5-tuple of (local IP, local port, remote IP, remote port, protocol) VaIlIJ(e:tlnfo about
socke

(state, buffers, ...)

When you receive a TCP packet

» First, check for a match on the 5-tuple
* Then, check for any open listen sockets

> Ls

SID LAddr LPort RAddr RPort Status
0 0.0.0.0 9999 0.0.0.0 0 LISTEN
1 10.1.0.2 9999 10.0.0.1 580060 ESTABLISHED
2 10.1.0.2 9999 10.0.0.1 23234 ESTABLISHED
3 10.1.0.2 9999 10.0.0.1 55434 ESTABLISHED

TCP Header

0 31

Sequence Number

Acknowledgement Number

Data RIS
Otinay | Reserved |BEEEYT windowsize

Initial
sequence

Sequence numbers
(Circumference = 0 to 2*32 slots)

Data received, acknowledged,
but not yet delivered to application

Window
shifts

Receiver's window
(Allocation buffer)
Up to 2*16-1 slots

................. > unusual event
=3 client/receiver path
—> server/sender path

LISTEN/-¢

(Step 2 of the 3-way-handshake) SYN/SYN+ACK

SYN

RECEIVED | oo, SYN/SYN+ACK (simultaneous open) ..

CONNECT/SYN (Step 1 of the 3-way-handshake)

A CLOSE/-
i CLOSE/-

LISTEN

i

SEND/SYN

Data exchange occurs

{ CLOSE/FIN

CLOSE/FIN

FIN WAIT 1

FIN WAIT 2

FIN+ACK/ACK i

FIN/ACK

- -

- (Step 3 of the 3-way-handshake)

FIN/ACK

Active CLOSE Passive CLOSE

CLOSE WAIT

CLOSING

¢ ACK/-

Y

CLOSE/FIN

TIME WAIT

Timeout

Sample Topologies

Some example networks you can test with...

// Our example API (sending side)
addr, err := netip.ParseAddr(“1.2.3.4”)

conn, err := ipstack.VConnect(addr)

someBuf := make([]byte, . . .)
conn.VWrite(someBuf)
conn.Vclose()

// Our example API (receiving side)
listenConn, err := ipstack.VListen(9999) // Listen on

clientConn, err := listenConn.VAccept()
clientConn.VRead(someBuf)
clientConn.Vclose()

=> This is not the only way to do the API,
more on this later

