
Don’t panic: TCP gearup III

Overview

• Final TCP stuff
• Any questions you have

Roadmap

Milestone I
• Start of your API and TCP stack
• Listen and establish connections => create sockets/TCB
• TCP handshake
• accept, connect, and start of ls REPL commands

Roadmap

Milestone II
• Basic sending and receiving using your sliding

window/send receive buffers
• Plan for the remaining features

Roadmap

Final deadline
• Retransmissions (+ computing RTO from RTT)
• Out-of-order packets
• Sending and receiving files (sf, rf)
• Zero-window probing
• Connection teardown

Sendfile/Recvfile
Using your socket API, send/recv a file

Sendfile
• Open a file, VConnect, call VWrite in a loop

Recvfile
• Listen on a port, Open a file, call VRead in a loop

=> This is the ultimate test: your implementation should be
similar to how you’d use a real socket API!

Demo!

So how do we get there?

Relevant materials

• Lecture 15 (10/24): Sliding window, retransmissions, zero window
probing

• Lecture 16 (10/29): connection teardown

• Testing and tools stuff: ”Getting started” in TCP docs
=> Can configure reference to drop packets
=> Some more testing notes soon (mostly mirroring what’s here)

Retransmissions

Usually, make a “retransmission queue”
• When segment sent, add segment to queue with some

metadata
=> What to store? You decide!

More info: Lecture 15, RFC6298

Retransmissions

Usually, make a “retransmission queue”
• When segment sent, add segment to queue with some

metadata
=> What to store? You decide!

• Start RTO timer
• When you get an ACK, reset on ACK

More info: Lecture 15, RFC6298

Retransmissions

Usually, make a “retransmission queue”
• When segment sent, add segment to queue with some

metadata
=> What to store? You decide!

• Start RTO timer, reset on ACK

When RTO timer expires
• Retransmit earliest unACK’d segment
• RTO = 2 * RTO (up to max)
• If no data after N retransmits => give up, terminate connection

More info: Lecture 15, RFC6298

Þ RFC6298 is your friend! Use it!
(edge cases, etc.)

RTO?

RTO = Retransmission Timeout (RTO)
=> Based on expected RTT: “how long until you SHOULD get an ACK?”

When you get an ACK, update RTO

More info: Lecture 15, RFC6298

Example upper/lower bounds
RTOmin ~= 100ms
RTOmax ~= 5sec

RTO?

RTO = Retransmission Timeout (RTO)
=> Based on expected RTT: “how long until you SHOULD get an ACK?”

When you get an ACK, update RTO
 => Smoothed weighted moving average of recent RTTs

More info: Lecture 15, RFC6298

Example upper/lower bounds
RTOmin ~= 100ms
RTOmax ~= 5sec

Computing RTO
Strategy: measure expected RTT based on ACKs received

Use exponentially weighted moving average (EWMA)
• RFC793 version (“smoothed RTT”):

SRTT = (⍺ * SRTTLast) + (1 - ⍺)* RTTMeasured
RTO = max(RTOMin, min(β * SRTT, RTOMax))

⍺ = “Smoothing factor”: .8-.9
β = “Delay variance factor”: 1.3—2.0
RTOMin = 1 second

RFC793, Sec 3.7
RFC6298 (slightly more complicated,

also measures variance)

UPDATE on perf requirement
Performance requirement: send/recv process MUST be event driven

– No busy-waiting
– time.Sleep MUST NOT BLOCK SEND/RECV process

Where does this apply?
• REPL: s, r, sf, rf
• VRead/VWrite
• Deciding when to send, or check for new data

=> Channels, condition variables, etc. are your friends

*Okay to use sleep, time.Ticker to have separate
thread trigger an event, like retransmissions

Out of order segments

Usually, make a “early arrival queue”
• When segment arrives, add to queue if it’s not the next segment

=> What to store? You decide!

• As more segments arrive, check the top of the queue to see if it
fills in any gaps

More info: Lecture 15

Zero window probing
When receiver’s window is full, sender enters zero window probing mode
• Stop sending segments
• At a periodic intervals, send 1 byte segments until receiver sends back

window > 0 bytes

More info: Lecture 15

Zero window probing
When receiver’s window is full, sender enters zero window probing mode
• Stop sending segments
• At a periodic intervals, send 1 byte segments until receiver sends back

window > 0 bytes

How to test?
• On one side, listen on a port: a 9999
• On other side, send a file

More info: Lecture 15

Connection teardown
4-way connection close process => see the lecture for details

• VClose just starts the connection close process
 => TCB not deleted until connection goes to CLOSED state

More info: Lecture 16

How to test?
• Don’t leave sendfile/recv file to the end--try to test as you go

– You WILL find bugs. Breathe. It’s going to be okay.

• Try to test each part individually, as shown here

How to test?
• Don’t leave sendfile/recv file to the end--try to test as you go

– You WILL find bugs. Breathe. It’s going to be okay.

• Try to test each part individually, as shown here

Don’t be afraid to write some test code!
 => Eg. To test retransmissions, comment out your ACK
processing and see what happens

Testing with packet loss
New REPL command in vrouter reference (out soon):

> drop 0.01 // Drop 1% of packets
> drop 0.5 // Drop 50% of packets (way too aggressive)

> drop 1 // Drop ALL packets (equivalent to “down”)

> drop 0 // Drop no packets

Also: can set by running vrouter with --drop

Custom vnet_run configurations

How to test TCP

R1 if1H1 if0if0 if0

:5000
10.0.0.1

:5001
10.0.0.2

:5002
10.1.0.1

:5003
10.1.0.2

Note: watching traffic in wireshark works differently in this project!
=> See Gearup II, ”TCP getting started” guide for details

H2

Useful wireshark mechanics
• SEQ/ACK analysis
• Follow TCP stream
• Validating the checksum

More docs coming soon!

Reference implementation

• Our implementation of TCP
• Try it and compare with your version!

Reference implementation

• Our implementation of TCP
• Try it and compare with your version!

Note: we’re using a new reference this year (after 8+ years!)
• We’ve tested as best we can, but there may be bugs
• See Ed FAQ, docs FAQ for list of known bugs
• Let us know if you have issues!

Reference implementation

• Our implementation of TCP
• Try it and compare with your version!

Note: we’re using a new reference this year (after 8+ years!)
• We’ve tested as best we can, but there may be bugs
• See Ed FAQ, docs FAQ for list of known bugs
• Let us know if you have issues!

Þ If the spec disagrees with the reference implementation,
the spec wins-–don’t propagate buggy behavior

(please help us find any discrepancies!)

Do not underestimate these last parts--it will take time to
debug and test them.

When stuck, take a break and come back to it. It will help.
 => Do NOT wait until the last minute.

Closing thoughts

Don’t panic.

TCP due

You are
here

One more thing…

if1if0 R1

The TCP checksum
… is pretty weird

Computing the TCP checksum involves making a
“pesudo-header” from TCP header + IP header fields:

The TCP checksum
… is pretty weird

Computing the TCP checksum involves making a
“pesudo-header” from TCP header + IP header fields:

Þ See the TCP-in-IP example for a demo of how to compute/verify it

IP stack

TCP Stack

Sockets API

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

Where to get more info

Our docs: “REPL commands” spec

Our docs: ”Socket API” example

IP stack

TCP Stack

Sockets API

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

Where to get more info

Our docs: “REPL commands” spec

Our docs: ”Socket API” example

Guidelines: “TCP notes” in our docs
 - Links to relevant RFCs (eg. RFC9293)
 - Our modifications/notes on the RFCs

- TCP-in-IP example (how to make/parse packets)
- IP docs

IP stack

TCP Stack
(Transport layer)

Sockets API

TCP packets
(Protocol 6)

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

API for sockets: abstraction for creating and using TCP
connections

conn, err := net.Dial(“tcp”, “10.0.0.1:80”)
. . .

someBuf := make([]byte, . . .)
conn.Write(someBuf)

Guidelines: “Socket API” specification in docs
(You get to design your own API!)

conn, err := tcpstack.VConnect(addr, port)
. . .

someBuf := make([]byte, . . .)
conn.VWrite(someBuf)

Example: Go’s socket API

Example: our socket API (yours can look different)

VListen(port) // Listen on a port
VConnect(addr, port) // Connect to a socket
VAccept(. . .) // Accept new connections (more on this later)

VWrite(. . .) // Send on a socket
VRead(. . .). // Recv on a socket

VClose(. . .) // Close a socket

Guidelines: “Socket API” specification in docs

IP stack

TCP Stack
(Transport layer)

Sockets API

TCP packets
(Protocol 6)

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

// Basic stuff (test your API)
a Listen on a port; accept new connections
c Connect to a TCP socket
ls List sockets

s Send on a socket
r Receive on a socket

cl Close socket

// Ultimate goal
sf Send a file
rf Receive a file

REPL commands: how we’ll test your
=> Think of these like “applications” that use your
socket API

Focus for
Milestone 1

Connection setup API: recap

VConnect
• “Active OPEN” in RFC
• Initiates new connection, returns normal socket
• Blocks until connection is established, or times out

VListen
• “Passive OPEN” in RFC
• Returns new listen socket
VAccept
• Input: a listen socket
• Blocks until a client connection is established
• Returns new normal socket

How exactly you implement this is up to you, but your API should have calls like this
(This isn’t arbitrary—it matches what the kernel API looks like)

// Create listen socket (bind)
listenConn, err := net.ListenTCP("tcp4", addr)

for {
 // Wait for a client to connect
 clientConn, err := listenConn.Accept()
 if err != nil {
 // . . .
 }

 // . . .
 go handleClient(clientConn)

}

func handleClient (conn net.Conn) {
 conn.Read(. . .)
}

Think back to your Snowcast server…

Listen socket

Why separate listen and accept?
=> Need to be able to handle multiple client connections!

“Normal” socket

func ACommandREPL() { // Runs as separate thread/goroutine

 // Create listen socket (bind)
 listenConn, err := tcpstack.VListen(port)

 for {
 // Wait for a client to connect
 clientConn, err := listenConn.VAccept()
 if err != nil {
 // . . .
 }

 // Store clientConn to use by other REPL commands
 }
}

Your ”a” command will look similar…

conn, err := tcpstack.VConnect(addr, port)
. . .
conn.VWrite(someBuf)

Go-style
• VConnect/VCccept/VListen return structs for normal/listen sockets
• Other functions (VAccept, VWrite, …) are methods on these structs
• In REPL: map socket ID => struct

C-style
• VConnect/VCccept/VListen return numbers (like file descriptors)
• Other functions (VAccept, VRead, …) take socket number as argument
• In TCP stack: map socket ID => struct

int sock_fd = VConnect(addr, port)
. . .
VWrite(sock_fd, some_buffer)

=> How you implement this is up to you (don’t even need to pick one of these)!

Ways to build the API More info: “Socket API example” in docs

Building TCP packets

• MUST use standard TCP header
• Encapsulation: TCP packet => payload of virtual IP packet
• Once again, you don’t need to build/parse this yourself

Þ See the TCP-in-IP example for a demo on how to build/parse a TCP header
(mostly uses same libraries as before)

https://github.com/brown-csci1680/lecture-examples/tree/main/tcp-demo

Closing thoughts

• Use your milestone time wisely!

• Wireshark is the best way to test—use it!

• Stuck? Don’t know what’s required? Just ask!
(And see Ed FAQ)

We are here to help!

Proto Local (yours) Remote (theirs) Socket

IP Port IP Port

tcp 1.2.3.4 12345 5.6.7.8 80 (normal struct)

tcp * 22 * * (listen struct)
... … … …

Key: 5-tuple of (local IP, local port, remote IP, remote port, protocol) Value: info about a
socket
(state, buffers, …)

When you receive a TCP packet

• First, check for a match on the 5-tuple
• Then, check for any open listen sockets

> ls
SID LAddr LPort RAddr RPort Status
 0 0.0.0.0 9999 0.0.0.0 0 LISTEN
 1 10.1.0.2 9999 10.0.0.1 58060 ESTABLISHED
 2 10.1.0.2 9999 10.0.0.1 23234 ESTABLISHED
 3 10.1.0.2 9999 10.0.0.1 55434 ESTABLISHED

TCP Header

Unfilled buffer

Data received,but not acknowledged

Data re
ceive

d, a
ckn

owledged

and delive
red to

 applica
tion

Sequence numbers
(Circumference = 0 to 2^32 slots)

Data received, acknowledged,
but not yet delivered to application

Initial
sequence
number

Receiver's window
(Allocation buffer)
Up to 2^16-1 slots

Window
shifts

rw
nd advertisem

ent

CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN
RECEIVED

SYN
SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path
server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK
(Step 3 of the 3-way-handshake)

Data exchange occurs

ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN+ACK/ACK

ACK/-

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSE

ACK/-

ACK/-

Sample Topologies

Some example networks you can test with…

See “sample networks” page for more info, including what
kinds of things you can test with each network

// Our example API (sending side)
addr, err := netip.ParseAddr(“1.2.3.4”)
. . .
conn, err := ipstack.VConnect(addr)
. . .

someBuf := make([]byte, . . .)
conn.VWrite(someBuf)
conn.Vclose()

// Our example API (receiving side)
listenConn, err := ipstack.VListen(9999) // Listen on

. . .

clientConn, err := listenConn.VAccept()
clientConn.VRead(someBuf)
clientConn.Vclose()

Guidelines: “Socket API” specification in docs=> This is not the only way to do the API,
more on this later

