Snowcast Gearup

A mental model

Snowcast: an “Internet radio station”
« Server: has several “stations” that serve audio data to clients

 C(lients: connect to server, ask for a station, receive audio data
— (Actually two programs, more on this later)

“Radio station”

 Server is always “playing” music, even if no one is listening
« Everyone gets the same data at the same time

[Not like Spotify. More like Twitch, but for audio. }

A mental model

Snowcast: an “Internet radio station”
« Server: has several “stations” that serve audio data to clients

 C(lients: connect to server, ask for a station, receive audio data
— (Actually two programs, more on this later)

“Radio station”

 Server is always “playing” music, even if no one is listening

« Everyone gets the same data at the same time
4,—._“#.//“_

[Not like Spotify. More like Suech, but for audio. }

Goals

* Intro to socket programming

* Chance to become more comfortable with socket
programming, in any language

* Learn how to implement a protocol, design a robust
server

Thinking about the architecture for Snowcast

" oypsceiBE 0
SrpTior 0"

LT

-- Selects station
-- Prints announcements

> ZepL

-- Binds on
"listener port"

-- Receives data
from station

ho(Up?)

DATA Frokh
CTATIo AT

6 Lib [
P

(

Writes data received to stdout
(Usually, will pipe data to pv command, which
measures rate at which data is being sent.)

=> Keeps track of which client
is connected to which station

=> For each station, reads files
and sends out chunks of data
at 16KB/s

=> When file loops, sends
Announce to tell control client
song has restarted

Snowcast: Protocol Overview

Note: Only need (1) and (2) for milestone!

L) STENMEN-

CLIEAT
—"""

AV
$71

Listens on UDP
port X

ol
ngaw/

—

1)

Snowcast Specification!

Note: This is only a preview. For the full
details and message formats, see the

(Ter)

|@ "Hello, my listener is on
port X"

elcome: "l have N stations"

M

@'Set Station <N>"

—

&

e

— |

Sinsen—

0]
Listens on TCP
port 16800

o/ A
— Sock

— L STepen—
Porri X

[. g J

v

(ADD cLiwwr
| o _C?:or/m«)]

v & @

/@

Song data: sent to
listener client via UDP
o (client IP, port X)

at rate of 16KB/s

@Announce <Song title>" (INEN FlLE

Thinking about your system's design

When building a networked application, consider the following

=> What state does the server store?

E.qg. for the guessing game
example...

— o BEK. Loty £
TR YWE 10 cUeL(0
- JOTAL fOLABEr— oF
GUESsES

M/ — o & -

What state does the server need per
client?

How to handle multiple clients?

— CLlEWT Soc k& 7~

/U)BE

— VN QOE /D/ GUESS
N -

- WE Goklov77VE
Gr Senven. [fon_ AU
CllENT

~ SErtin_ fECLC
CIC7~ o2 c1ta€

0 worze? (NN
Z/ME/ Kesert

See——

ok

For Yoo JES/6R DOCVMEM TRIK

ABoyr Now v ood 7o TR
SAocAsT!

Concretely: how Snowcast works

'Client 1

E [snowcast_control

i [snowcast_listener]\

Song Files

Client 2
[snowcast_control 5
I

: [snowcast_listener]‘

%

EKClient N

[snowcast_control

i [snowcast_listener]‘(

«—, Control Protocol (TCP)

<« — = — = Song data (UDP)

Demo

What you will implement

You will implement all three programs
— snowcast_server: the server

— The client (two programs):
* snowcast_control: Control client
* snowcast listener: Listener client

« We give you the specification for the protocol, and how the
programs should behave

* You decide how to implement them

[Need to be able to interoperate with our reference version (and tests)! }

Roadmap

Setup <--- you are here
Milestone: Sending initial messages (welcome/hello)
Building your server (where to put state, etc.)

— Subscribing to stations

— Listing clients

Listener + streaming
Announcements while streaming

Error handling/timeouts/etc

What we will test

* Your programs must interoperate with ours (ie, speak the
same protocol)

* Don’t need to stream music per se—we just measure for
a streaming rate of ~16KiB/s

* Some server design guidelines (see spec)

— Must support multiple clients, protect shared data
— Reasonable error handling (+timeouts)

Languages

You can work in any of the following languages:
* Go

« C/C++

* Rust

We recommend Go, even if it is new to you.

Essential Resources

« The handout: high-level overview, grading details

Setup guide and warmup: Warmup tutorial, Implementation-level
resources, FAQs

The specification: all the details on the Snowcast protocol

— Implementation spec: how your programs should behave (arguments, etc.)
— Protocol spec: how your messages should be formatted, etc.

[See the FAQ/Reading list post on Ed!]

Essential Resources

« The handout: high-level overview, grading details

« Setup guide and warmup: Warmup tutorial, Implementation-level
resources, FAQs

« The specification: all the details on the Snowcast protocol
— Implementation spec: how your programs should behave (arguments, etc.)
— Protocol spec: how your messages should be formatted, etc.

* Lecture examples: don’t copy, but look at them side by side
* Reference version: complete working version you can try
* TJest suites: you can run our tests!

[See the FAQ/Reading list post on Ed!]

Implementation resources

* Language resources on website

» Setup/warmup guide: LOTS of tutorials re: testing,
debugging, common things that go wrong...

 Some utilities for C (linked list, hash table)

Libraries

 You can use libraries you find online (go packages, rust
crates, etc), as long as it doesn't trivialize the assignment

* You must manually parse packets on your own /

» Easy examples: argument parsing, logging, ...

Effective Al use / Al policy

You should write your own code code this project.

Treat it like an intro course assignment
=> you're just learning the fundamentals!

Al encouraged for: understanding errors and
documentation, explaining examples, etc.

Take advantage of this chance to learn
before the later projects!

https://brown-csci1680.github.io/content/snowcast/

How to get started

If this project feels overwhelming at first, remember:
you are not alone--everyone is new at this!

It's very normal for this kind of programming to feel to tough.

You can do this. Just start early, come to hours,
and please reach out to us with questions! @

)/iu o7 7%//_(/ (O BlrieveE
A /W,/ %

Dev environment

* You should be working in the container environment

« Be sure to clone your repo where you can access it from the
container

| ——DEV-ENVIRONMENT
| |-—docker/
| -——home/
| |-—snowcast-yourname/

I
I
| |-—run-container
I

How to start

« Watch Lecture 3, if you have not done so already

* Follow the steps in the warmup, which guides you
through building/sending messages

Take a look at the “guessing game” example code (from
lecture 3, also full version) for more details

How to start a go project

-pkg/

For each program you wan
-snowcast-yourname create a dir and main.go under cmd/

—cmd/<:\

- some-program/

- main.go

- another-program
/mjifgi\/

- somelib/

- somelib.go

For details, please see
recording and sockets example
code from Lecture 3

Place shared code here, can be imported
by any program in cmd

The reference implementation

A complete implementation of Snowcast you can run

* Try it out! See how your program should operate!

* Your implementation should act like this one

Wireshark

This is the best way to test early-on.

Ask yourself:
» “Does this packet match the specification?”
« “Any warnings from wireshark?"”

The tester and autograder

We have provided a test suite with all of our tests
« Check your work as you go, see it in Wireshark

« We'll have the same test suite available in gradescope soon
= Gradescope is generally more authoritative/reliable than your own system

« Want to know what a test does? See the list of tests!

Note: please test your project manually first (similar to the demo in this
recording) before using the tester, or as soon as you have failing tests
=> This is often the best way to understand what's happening.

It you are failing tests

* Run manually => observe output in Wireshark
* Run the test on its own (see setup guide)

* |s Gradescope any different?

If you are convinced you should be passing a test, but it's failing,
note it in your readme—we’ll consider this when grading.

Recommendations

» Start early, please ask questions

* Use tests/wireshark to help you debug!

